The vector will delete, construct, and copy whatever type it contains. In the case of a vector of pointers to a class/structure, it will delete, construct, and copy pointers, leaving the actual objects the pointers point to alone. It is up to you to allocate and deallocate these.
EDIT
An example:
If you have the following:
class A
{
  A() {}
}
void foo(void)
{
   A * pointerToA = new A;
}
At the end of the function foo's scope the only thing that is deallocated is the memory for the variable pointerToA itself, i.e. 4 bytes that hold an address (in 32 bit) - which in this case is stored on the stack. The only way that the memory allocated for a new instance of class A will be freed is if you manually call delete with the address to pointerToA.
Let's take the example of an array of class A
A ** arrayOfPointerToA = new A*[10];
for(unsigned i = 0; i < 10; ++i)
  arrayOfPointerToA[i] = new A;
which is similar to what happens when you have std::vector<A*>. When you call
delete [] arrayOfPointerToA;
you're deallocating the memory for the array of pointers, not for each A.

In the above diagram, the memory deallocated by the above call to delete is highlighted in red. Note that each A is stored at a random location in memory in this instance since they were all allocated separately.
Now taking this to a vector:
A std::vector<A> effectively uses new A[size] to allocate memory. If you're storing a raw pointer, this would mean it would allocate an array of type A, which means that size number of objects of type A are created. When the vector frees its memory size number of objects of type A are destroyed. Now take that example and replace A with A* and you'll see that no objects of type A are destroyed.
This is a fundamental part of how C++ and pointers work, not just a property of containers. If containers did arbitrarily call delete on each member, this wouldn't make sense as when we have a container A we would call delete on an instance of an object instead of a pointer to that object which is not valid.