Here's a possibility to get you started with the "xts" package.
Start with some sample data, as a data.frame:
mydf <- structure(list(Date = c("28-04-14", "28-04-14", "28-04-14", "28-04-14",
                                "29-04-14", "29-04-14", "29-04-14"), 
                       Time = c("23:42:30", "23:47:00", "23:51:30", "23:56:00", 
                                "00:00:00", "00:04:30", "00:09:00"), 
                       col3 = c(0.48, 0.39, 0.41, 0.33, 0.32, 0.15, 0.12), 
                       col4 = c(164, 150, 164, 160, 138, 141, 133)), 
                  .Names = c("Date", "Time", "col3", "col4"), 
                  class = "data.frame", row.names = c(NA, -7L))
Convert it to an "xts" object:
library(xts)
myxts <- xts(mydf[-c(1, 2)], 
             as.POSIXct(paste(as.Date(mydf$Date, format="%d-%m-%y"), 
                              mydf$Time), tz=""))
It now looks like this:
myxts
#                     col3 col4
# 2014-04-28 23:42:30 0.48  164
# 2014-04-28 23:47:00 0.39  150
# 2014-04-28 23:51:30 0.41  164
# 2014-04-28 23:56:00 0.33  160
# 2014-04-29 00:00:00 0.32  138
# 2014-04-29 00:04:30 0.15  141
# 2014-04-29 00:09:00 0.12  133
The "xts" package has a lot of convenient time-based functions, like apply.daily, apply.weekly, and so on.
apply.daily(myxts, mean)
#                          col3     col4
# 2014-04-28 23:56:00 0.4025000 159.5000
# 2014-04-29 00:09:00 0.1966667 137.3333
It also lets you conveniently extract a specific date or time period:
myxts["2014-04-29"]
#                     col3 col4
# 2014-04-29 00:00:00 0.32  138
# 2014-04-29 00:04:30 0.15  141
# 2014-04-29 00:09:00 0.12  133
Here's what summary looks like for that particular date:
summary(myxts["2014-04-29"])
#      Index                          col3             col4      
#  Min.   :2014-04-29 00:00:00   Min.   :0.1200   Min.   :133.0  
#  1st Qu.:2014-04-29 00:02:15   1st Qu.:0.1350   1st Qu.:135.5  
#  Median :2014-04-29 00:04:30   Median :0.1500   Median :138.0  
#  Mean   :2014-04-29 00:04:30   Mean   :0.1967   Mean   :137.3  
#  3rd Qu.:2014-04-29 00:06:45   3rd Qu.:0.2350   3rd Qu.:139.5  
#  Max.   :2014-04-29 00:09:00   Max.   :0.3200   Max.   :141.0