The output of a MERGE operation on two pandas data frames does not yield the expected result:
**dfmatrix**:
    …   young   label   filename
0   …   1       neg     cv005_29357
1   …   0       neg     cv006_17022
2   …   0       neg     cv007_4992
3   …   1       neg     cv008_29326
4   …   1       neg     cv009_29417
**dfscores**:
   filename  score
0  cv005_29357   -10
1  cv006_17022   5
dfnew = pandas.merge(dfmatrix, dfscores, on='filename', how='outer', left_index=False, right_index=False)
**dfnew**:
   …    young   label   filename    score_y
0  …    0       neg     cv005_29357 NaN
1  …    1       neg     cv006_17022 NaN
2  …    0       neg     cv007_4992  NaN
3  …    0       neg     cv008_29326 NaN
4  …    1       neg     cv009_29417 NaN
Excpected Output:
**dfnew**:
   …    young   label   filename    score_y
0  …    0       neg     cv005_29357 -10
1  …    1       neg     cv006_17022 5
2  …    0       neg     cv007_4992  NaN
3  …    0       neg     cv008_29326 NaN
4  …    1       neg     cv009_29417 NaN
What am I doing wrong?
Update: this post suggests that MERGE is the way to go for the purposes of joining two data frames
