I have following code which is supposed to do some operation over a vector of data and store the result, my problem is that when I run this code at first each iteration (each outter loop) takes about 12 sec but after some time iteration's time become longer at the end each iteration takes 2 minutes to become complete, I wanna know what's wrong with my code? is this related to the size of memory and the size of array I am keeping? if yes how can I solve it? if no what's the problem?
allclassifiers is 2D vectors: allclassifiers.shape =  tuple: (1020, 1629) which means my for should loop 1629 times and each time do the operation on a vectors of size 1020, each vectors is array 0 or 1s.
At the end the size of points_comb is around 400MB, points_comb.shape = tuple: (26538039, 2), and I must mention I am running the code on a system with 4GB of RAM.
valid_list is a vector of 0 and 1 with size of 1020, valid_list.shape tuple: (1020,)
startTime = datetime.now()
for i in range(allclassifiers.shape[1]):
    for j in range(allclassifiers.shape[1]):
        rs_t = combine_crisp(valid_list, allclassifiers[:,i], allclassifiers[:,j], boolean_function)
        fpr_tmp, tpr_tmp = resp2pts(valid_list, rs_t)
        points_comb = np.vstack((points_comb,np.hstack((fpr_tmp, tpr_tmp))))
    endTime = datetime.now()
    executionTime = endTime - startTime
    print "Combination for classifier: " + str(i)+ ' ' + str(executionTime.seconds / 60) + " minutes and " + str((executionTime.seconds) - ((executionTime.seconds / 60)*60)) +" seconds"
def combine_crisp(lab, r_1, r_2, fun):
    rs = np.empty([len(lab), len(fun)])
    k = 0
    for b in fun:
        if b == 1:            #----------------> 'A AND B'
            r12 = np.logical_and(r_1, r_2)
        elif b == 2:            #----------------> 'NOT A AND B'
            r12 = np.logical_not(np.logical_and(r_1, r_2))
        elif b == 3:            #----------------> 'A AND NOT B'
            r12 = np.logical_and(r_1, np.logical_not (r_2))
        elif b == 4:            #----------------> 'A NAND B'
            r12 = np.logical_not( (np.logical_and(r_1, r_2)))
        elif b == 5:            #----------------> 'A OR B'
            r12 = np.logical_or(r_1, r_2)
        elif b == 6:            #----------------> 'NOT A OR B'; 'A IMP B'
            r12 = np.logical_not (np.logical_or(r_1, r_2))
        elif b == 7:            #----------------> 'A OR NOT B' ;'B IMP A'
            r12 = np.logical_or(r_1, np.logical_not (r_2))
        elif b == 8:            #----------------> 'A NOR B'
            r12 = np.logical_not( (np.logical_or(r_1, r_2)))
        elif b == 9:            #----------------> 'A XOR B'
            r12 = np.logical_xor(r_1, r_2)
        elif b == 10:            #----------------> 'A EQV B'
            r12 = np.logical_not (np.logical_xor(r_1, r_2))
        else:
            print('Unknown Boolean function')
        rs[:, k] = r12
        k = k + 1
    return rs
def resp2pts(lab, resp):
    lab = lab > 0
    resp = resp > 0
    P = sum(lab)
    N = sum(~lab)
    if resp.ndim == 1:
        num_pts = 1
        tp = sum(lab[resp])
        fp = sum(~lab[resp])
    else:
        num_pts = resp.shape[1]
        tp = np.empty([num_pts,1])
        fp = np.empty([num_pts,1])
        for i in np.arange(num_pts):
            tp[i] = np.sum( lab[resp[:,i]]) 
            fp[i] = np.sum( ~lab[resp[:,i]])
    tp = np.true_divide(tp,P)
    fp = np.true_divide(fp,N)
    return fp, tp
 
    
 
    