If you want a function to write to a non-array parameter of type T, you must pass a pointer to that parameter.
void func( T *ptr )
{
*ptr = new_value;
}
void foo ( void )
{
T var;
func( &var ); // writes new value to var
}
If T is a pointer type Q *, it would look like
void func( Q **ptr )
{
*ptr = new_pointer_value;
}
void foo ( void )
{
Q *var;
func( &var ); // writes new pointer value to var
}
If Q is a pointer type R *, you would get
void func( R ***ptr )
{
*ptr = new_pointer_to_pointer_value;
}
void foo ( void )
{
R **var;
func( &var ); // writes new pointer to pointer value to var
}
The pattern is the same in all three cases; you're passing the address of the variable var, so the formal parameter ptr has to have one more level of indirection than the actual parameter var.
One sylistic nit: instead of writing
p = (int *) malloc( sizeof (int) );
use
p = malloc( sizeof *p );
instead.
In C (as of the 1989 standard), you don't need to cast the result of malloc; void pointers can be assigned to other pointer types and vice versa without needing a cast (this is not true in C++, but if you're writing C++, you should be using the new operator instead of malloc anyway). Also, under the 1989 version of the language, using the cast would mask a bug if you forgot to include stdlib.h or otherwise didn't have a declaration for malloc in scope. That hasn't been a problem since the 1999 version, though, so now it's more a matter of readability than anything else.
The type of the expression *p is int, so the result of sizeof *p is the same as the result of sizeof (int). This way, if you ever change the type of p, you don't have to modify the malloc call.
To allocate an array of values, you'd use something like
T *p = malloc( sizeof *p * NUM_ELEMENTS );
or, if you want everything to be zeroed out initially, use
T *p = calloc( sizeof *p, NUM_ELEMENTS );