The following code/outcome baffles me as to why data.table returns NA for the mean functions and not the sd function.
library(data.table)
test <- data.frame('id'=c(1,2,3,4,5),
                   'A'=seq(2,9,length=5),
                   'B'=seq(3,9,length=5),
                   'C'=seq(4,9,length=5),
                   'D'=seq(5,9,length=5))
test <- as.data.table(test)
test[,`:=`(mean_test = mean(.SD), sd_test = sd(.SD)),by=id,.SDcols=c('A','B','C','D')]
> test
   id    A   B    C    D mean_test   sd_test
   1:  1 2.00 3.0 4.00 5        NA 1.2909944
   2:  2 3.75 4.5 5.25 6        NA 0.9682458
   3:  3 5.50 6.0 6.50 7        NA 0.6454972
   4:  4 7.25 7.5 7.75 8        NA 0.3227486
   5:  5 9.00 9.0 9.00 9        NA 0.0000000
I've learned quite a bit searching around, going through the DT tutorials/examples. This question is very similar to what I was hoping to do.
Why does the standard deviation function work and the mean function return NA?
Edit: Using Ricardo Saporta's solution:
test[,`:=`(mean_test = apply(.SD, 1, mean), sd_test = apply(.SD, 1, sd),by=id,.SDcols=c('A','B','C','D')]
> test
   id    A   B    C D mean_test   sd_test
1:  1 2.00 3.0 4.00 5     3.500 1.2909944
2:  2 3.75 4.5 5.25 6     4.875 0.9682458
3:  3 5.50 6.0 6.50 7     6.250 0.6454972
4:  4 7.25 7.5 7.75 8     7.625 0.3227486
5:  5 9.00 9.0 9.00 9     9.000 0.0000000
 
     
     
     
     
    