I have made both version of Mod128by64 'Russian peasant' division function: classic and speed optimised. Speed optimised can do on my 3Ghz PC more than 1000.000 random calculations per second and is more than three times faster than classic function.
If we compare the execution time of calculating 128 by 64 and calculating 64 by 64 bit modulo than this function is only about 50% slower.
Classic Russian peasant:
function Mod128by64Clasic(Dividend: PUInt128; Divisor: PUInt64): UInt64;
//In : eax = @Dividend
//   : edx = @Divisor
//Out: eax:edx as Remainder
asm
//Registers inside rutine
//edx:ebp = Divisor
//ecx = Loop counter
//Result = esi:edi
  push    ebx                     //Store registers to stack
  push    esi
  push    edi
  push    ebp
  mov     ebp, [edx]              //Load  divisor to edx:ebp
  mov     edx, [edx + 4]
  mov     ecx, ebp                //Div by 0 test
  or      ecx, edx
  jz      @DivByZero
  push    [eax]                   //Store Divisor to the stack
  push    [eax + 4]
  push    [eax + 8]
  push    [eax + 12]
  xor     edi, edi                //Clear result
  xor     esi, esi
  mov     ecx, 128                //Load shift counter
@Do128BitsShift:
  shl     [esp + 12], 1           //Shift dividend from stack left for one bit
  rcl     [esp + 8], 1
  rcl     [esp + 4], 1
  rcl     [esp], 1
  rcl     edi, 1
  rcl     esi, 1
  setc    bh                      //Save 65th bit
  sub     edi, ebp                //Compare dividend and  divisor
  sbb     esi, edx                //Subtract the divisor
  sbb     bh, 0                   //Use 65th bit in bh
  jnc     @NoCarryAtCmp           //Test...
  add     edi, ebp                //Return privius dividend state
  adc     esi, edx
@NoCarryAtCmp:
  loop    @Do128BitsShift
//End of 128 bit division loop
  mov     eax, edi                //Load result to eax:edx
  mov     edx, esi
@RestoreRegisters:
  lea     esp, esp + 16           //Restore Divisors space on stack
  pop     ebp                     //Restore Registers
  pop     edi                     
  pop     esi
  pop     ebx
  ret
@DivByZero:
  xor     eax, eax                //Here you can raise Div by 0 exception, now function only return 0.
  xor     edx, edx
  jmp     @RestoreRegisters
end;
Speed optimised Russian peasant:
function Mod128by64Oprimized(Dividend: PUInt128; Divisor: PUInt64): UInt64;
//In : eax = @Dividend
//   : edx = @Divisor
//Out: eax:edx as Remainder
asm
//Registers inside rutine
//Divisor = edx:ebp
//Dividend = ebx:edx //We need 64 bits
//Result = esi:edi
//ecx = Loop counter and Dividend index
  push    ebx                     //Store registers to stack
  push    esi
  push    edi
  push    ebp
  mov     ebp, [edx]              //Divisor = edx:ebp
  mov     edx, [edx + 4]
  mov     ecx, ebp                //Div by 0 test
  or      ecx, edx
  jz      @DivByZero
  xor     edi, edi                //Clear result
  xor     esi, esi
//Start of 64 bit division Loop
  mov     ecx, 15                 //Load byte loop shift counter and Dividend index
@SkipShift8Bits:                  //Small Dividend numbers shift optimisation
  cmp     [eax + ecx], ch         //Zero test
  jnz     @EndSkipShiftDividend
  loop    @SkipShift8Bits         //Skip Compute 8 Bits unroled loop ?
@EndSkipShiftDividend:
  test    edx, $FF000000          //Huge Divisor Numbers Shift Optimisation
  jz      @Shift8Bits             //This Divisor is > $00FFFFFF:FFFFFFFF
  mov     ecx, 8                  //Load byte shift counter
  mov     esi, [eax + 12]         //Do fast 56 bit (7 bytes) shift...
  shr     esi, cl                 //esi = $00XXXXXX
  mov     edi, [eax + 9]          //Load for one byte right shifted 32 bit value
@Shift8Bits:
  mov     bl, [eax + ecx]         //Load 8 bit part of Dividend
//Compute 8 Bits unroled loop
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove0         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow0
  ja      @DividentAbove0
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow0
@DividentAbove0:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow0:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove1         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow1
  ja      @DividentAbove1
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow1
@DividentAbove1:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow1:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove2         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow2
  ja      @DividentAbove2
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow2
@DividentAbove2:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow2:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove3         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow3
  ja      @DividentAbove3
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow3
@DividentAbove3:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow3:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove4         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow4
  ja      @DividentAbove4
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow4
@DividentAbove4:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow4:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove5         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow5
  ja      @DividentAbove5
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow5
@DividentAbove5:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow5:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove6         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow6
  ja      @DividentAbove6
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow6
@DividentAbove6:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow6:
  shl     bl, 1                   //Shift dividend left for one bit
  rcl     edi, 1
  rcl     esi, 1
  jc      @DividentAbove7         //dividend hi bit set?
  cmp     esi, edx                //dividend hi part larger?
  jb      @DividentBelow7
  ja      @DividentAbove7
  cmp     edi, ebp                //dividend lo part larger?
  jb      @DividentBelow7
@DividentAbove7:
  sub     edi, ebp                //Return privius dividend state
  sbb     esi, edx
@DividentBelow7:
//End of Compute 8 Bits (unroled loop)
  dec     cl                      //Decrement byte loop shift counter
  jns     @Shift8Bits             //Last jump at cl = 0!!!
//End of division loop
  mov     eax, edi                //Load result to eax:edx
  mov     edx, esi
@RestoreRegisters:
  pop     ebp                     //Restore Registers
  pop     edi
  pop     esi
  pop     ebx
  ret
@DivByZero:
  xor     eax, eax                //Here you can raise Div by 0 exception, now function only return 0.
  xor     edx, edx
  jmp     @RestoreRegisters
end;