Prove that
1 + 1/2 + 1/3 + ... + 1/n is O(log n).
Assume n = 2^k
I put the series into the summation, but I have no idea how to tackle this problem. Any help is appreciated
Prove that
1 + 1/2 + 1/3 + ... + 1/n is O(log n).
Assume n = 2^k
I put the series into the summation, but I have no idea how to tackle this problem. Any help is appreciated
This follows easily from a simple fact in Calculus:

and we have the following inequality:

Here we can conclude that S = 1 + 1/2 + ... + 1/n is both Ω(log(n)) and O(log(n)), thus it is Ɵ(log(n)), the bound is actually tight.
If the problem was changed to :
1 + 1/2 + 1/4 + ... + 1/n
series can now be written as:
1/2^0 + 1/2^1 + 1/2^2 + ... + 1/2^(k)
How many times loop will run? 0 to k = k + 1 times.From both series, we can see 2^k = n. Hence k = log (n). So, the number of times it runs = log(n) + 1 = O(log n).