The program is using the Central Limit Theorem - sums of independent and identically distributed random variables X with finite variance asymptotically converge to a normal (a.k.a. Gaussian) distribution whose mean is the sum of the means, and variance is the sum of the variances. Scaling this by N, the number of X's summed, gives the sample mean (a.k.a. average). If the expected value of X is μ and the variance of X is σ2, the expected value of the sample mean is also μ and it has variance σ2 / N.
Since a Uniform(0,1) has mean 0.5 and variance 1/12, your algorithm will generate results that are pretty close to normally distributed with a mean of 0.5 and a variance of 1/12000. Consequently 99.7% of the outcomes should fall within +/-3 standard deviations of the mean, i.e., in the range 0.5+/-0.0274.
This is a ridiculously inefficient way to generate normals. Better alternatives include the Box-Muller method, Polar method, or ziggurat method.