I have read a csv file and pivoted it to get to following structure:
pivoted = df.pivot('user_id', 'group', 'value')
lookup = df.drop_duplicates('user_id')[['user_id', 'group']]
lookup.set_index(['user_id'], inplace=True)
result = pivoted.join(lookup)
result = result.fillna(0) 
Section of the result:
             0     1     2    3     4    5   6  7    8   9  10  11  12  13  group
user_id                                                                      
2        33653  2325   916  720   867  187  31  0    6   3  42  56  92  15    l-1
4        18895   414  1116  570  1190   55  92  0  122  23  78   6   4   2    l-2 
16        1383    70    27   17    17    1   0  0    0   0   1   0   0   0    l-2
50         396    72    34    5    18    0   0  0    0   0   0   0   0   0    l-3
51        3915  1170   402  832  2791  316  12  5  118  51  32   9  62  27    l-4
I want to sum across column 0 to column 13 by each row and divide each cell by the sum of that row. I am still getting used to pandas; if I understand correctly, we should try to avoid for loops when doing things like this? In other words, how can I do this in a 'pandas' way?
 
     
     
     
     
     
     
    