I have a timeseries dataframe that is similar to:
ts = pd.DataFrame([['Jan 2000','WidgetCo',0.5, 2], ['Jan 2000','GadgetCo',0.3, 3], ['Jan 2000','SnazzyCo',0.2, 4],
          ['Feb 2000','WidgetCo',0.4, 2], ['Feb 2000','GadgetCo',0.5, 2.5], ['Feb 2000','SnazzyCo',0.1, 4],
          ], columns=['month','company','share','price'])
Which looks like:
  month   company  share  price
0  Jan 2000  WidgetCo    0.5    2.0
1  Jan 2000  GadgetCo    0.3    3.0
2  Jan 2000  SnazzyCo    0.2    4.0
3  Feb 2000  WidgetCo    0.4    2.0
4  Feb 2000  GadgetCo    0.5    2.5
5  Feb 2000  SnazzyCo    0.1    4.0
I can pivot this table like so:
pd.pivot_table(ts,index='month', columns='company')
Which gets me:
            share                      price                  
company  GadgetCo SnazzyCo WidgetCo GadgetCo SnazzyCo WidgetCo
month                                                         
Feb 2000      0.5      0.1      0.4      2.5        4        2
Jan 2000      0.3      0.2      0.5      3.0        4        2
This is what I want except that I need to collapse the MultiIndex so that the company is used as a prefix for share and price like so:
          WidgetCo_share  WidgetCo_price  GadgetCo_share  GadgetCo_price   ...
month                                                                      
Jan 2000             0.5               2             0.3             3.0   
Feb 2000             0.4               2             0.5             2.5   
I came up with this function to do just that but it seems like a poor solution:
def pivot_table_to_flat(df, column, index):
    res = df.set_index(index)
    cols = res.drop(column, axis=1).columns.values
    resulting_cols = []
    for prefix in res[column].unique():
        for col in cols:
            new_col_name = prefix + '_' + col
            res[new_col_name] = res[res[column] == prefix][col]
            resulting_cols.append(new_col_name)
    return res[resulting_cols]
pivot_table_to_flat(ts, index='month', column='company')
What is a better way of accomplishing a pivot resulting in a columns with prefixes as opposed to a MultiIndex?
 
     
     
    