I am trying to keep just certain columns of a DataFrame, and it works fine when column names are strings:
In [2]: import numpy as np
In [3]: import pandas as pd
In [4]: a = np.arange(35).reshape(5,7)
In [5]: df = pd.DataFrame(a, ['x', 'y', 'u', 'z', 'w'], ['a', 'b', 'c', 'd', 'e', 'f', 'g'])
In [6]: df
Out[6]: 
    a   b   c   d   e   f   g
x   0   1   2   3   4   5   6
y   7   8   9  10  11  12  13
u  14  15  16  17  18  19  20
z  21  22  23  24  25  26  27
w  28  29  30  31  32  33  34
[5 rows x 7 columns]
In [7]: df[[1,3]] #No problem
Out[7]: 
    b   d
x   1   3
y   8  10
u  15  17
z  22  24
w  29  31
However, when column names are integers, I am getting a key error:
In [8]: df = pd.DataFrame(a, ['x', 'y', 'u', 'z', 'w'], range(10, 17))
In [9]: df
Out[9]: 
   10  11  12  13  14  15  16
x   0   1   2   3   4   5   6
y   7   8   9  10  11  12  13
u  14  15  16  17  18  19  20
z  21  22  23  24  25  26  27
w  28  29  30  31  32  33  34
[5 rows x 7 columns]
In [10]: df[[1,3]]
Results in:
KeyError: '[1 3] not in index'
I can see why pandas does not allow that -> to avoid mix up between indexing by column names and column numbers. However, is there a way to tell pandas that I want to index by column numbers? Of course, one solution is to convert column names to strings, but I am wondering if there is a better solution.
 
     
     
     
    