I have a dataframe that contains a list of lat/lon coordinates:
d = {'Provider ID': {0: '10001',
  1: '10005',
  2: '10006',
  3: '10007',
  4: '10008',
  5: '10011',
  6: '10012',
  7: '10016',
  8: '10018',
  9: '10019'},
 'latitude': {0: '31.215379379000467',
  1: '34.22133455500045',
  2: '34.795039606000444',
  3: '31.292159523000464',
  4: '31.69311635000048',
  5: '33.595265517000485',
  6: '34.44060759100046',
  7: '33.254429322000476',
  8: '33.50314015000049',
  9: '34.74643089500046'},
 'longitude': {0: ' -85.36146587999968',
  1: ' -86.15937514799964',
  2: ' -87.68507485299966',
  3: ' -86.25539902199966',
  4: ' -86.26549483099967',
  5: ' -86.66531866799966',
  6: ' -85.75726760699968',
  7: ' -86.81407933399964',
  8: ' -86.80242858299965',
  9: ' -87.69893502799965'}}
df = pd.DataFrame(d)
My goal is to use the haversine function to figure out the distances between every item in KM:
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
    """
    Calculate the great circle distance between two points 
    on the earth (specified in decimal degrees)
    """
    # convert decimal degrees to radians 
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
    # haversine formula 
    dlon = lon2 - lon1 
    dlat = lat2 - lat1 
    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
    c = 2 * asin(sqrt(a)) 
    # 6367 km is the radius of the Earth
    km = 6367 * c
    return km
My goal is to get a dataframe that looks like the result_df below where the values are the distance between each provider id:
 result_df = pd.DataFrame(columns = df['Provider ID'], index=df['Provider ID'])
I can do this in a loop, however it's terribly slow. I'm looking for some help in converting this to a vectorized method:
for first_hospital_coordinates in result_df.columns:
    for second_hospital_coordinates in result_df['Provider ID']:
        if first_hospital_coordinates == 'Provider ID':
            pass
        else:
            L1 = df[df['Provider ID'] == first_hospital_coordinates]['latitude'].astype('float64').values
            O1 = df[df['Provider ID'] == first_hospital_coordinates]['longitude'].astype('float64').values
            L2 = df[df['Provider ID'] == second_hospital_coordinates]['latitude'].astype('float64').values
            O2 = df[df['Provider ID'] == second_hospital_coordinates]['longitude'].astype('float64').values
            distance = haversine(O1, L1, O2, L2)
            crit = result_df['Provider ID'] == second_hospital_coordinates
            result_df.loc[crit, first_hospital_coordinates] = distance
 
     
     
    