I am new to R, and could not find specific help for my question on this site.
I have (among others) ten character variables in my dataframe $grant_database, country_1 through country_10. Each contains either a country code, for example E20, F27 or G10, or an NA. Each case is a grant to a project. The ten country variables specify which country/countries a grant is benefitting. In my dataframe, most, but not all cases will have at least one country code, first marked in country_1, many will have one for country_2 as well, and some even for country_3 to _10. All empty fields are marked with an NA.
id  country_1  country_2  country_3  country_4  country_5  country_6 ...new_binaryvar
1   F20        NA         NA         NA         NA         NA           0        
2   E12        E17        E52        NA         NA         NA           0
3   O62        O33        NA         NA         NA         NA           0
4   E21        E20        NA         NA         NA         NA           1
5   NA         NA         NA         NA         NA         NA           0
...
I wish to create a new factor flagging grants which benefit a defined subset of countries. This binary "dummy" variable should give the value "1" to each case that in at least one of the ten country variables corresponds with a list of country codes. It should give "0" to each case/grant that does not have a corresponding country code in any of its ten country variables. Let this subset of country codes to be flagged be: E20, F27 and G10 (in reality, there are about 40 to be flagged, from 150+).
Would you help me out by suggesting a way to program this? Thank you very much for your help!
 
    