I am trying to implement KMeans using Apache Spark.
val data = sc.textFile(irisDatasetString)
val parsedData = data.map(_.split(',').map(_.toDouble)).cache()
val clusters = KMeans.train(parsedData,3,numIterations = 20)
on which I get the following error :
error: overloaded method value train with alternatives:
  (data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
  (data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int)org.apache.spark.mllib.clustering.KMeansModel <and>
  (data: org.apache.spark.rdd.RDD[org.apache.spark.mllib.linalg.Vector],k: Int,maxIterations: Int,runs: Int,initializationMode: String)org.apache.spark.mllib.clustering.KMeansModel
 cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]], Int, numIterations: Int)
       val clusters = KMeans.train(parsedData,3,numIterations = 20)
so I tried converting Array[Double] to Vector as shown here
scala> val vectorData: Vector = Vectors.dense(parsedData)
on which I got the following error :
error: type Vector takes type parameters
   val vectorData: Vector = Vectors.dense(parsedData)
                   ^
error: overloaded method value dense with alternatives:
  (values: Array[Double])org.apache.spark.mllib.linalg.Vector <and>
  (firstValue: Double,otherValues: Double*)org.apache.spark.mllib.linalg.Vector
 cannot be applied to (org.apache.spark.rdd.RDD[Array[Double]])
       val vectorData: Vector = Vectors.dense(parsedData)
So I am inferring that org.apache.spark.rdd.RDD[Array[Double]] is not the same as Array[Double]
How can I proceed with my data as org.apache.spark.rdd.RDD[Array[Double]] ? or how can I convert org.apache.spark.rdd.RDD[Array[Double]] to Array[Double] ?