I am trying to create a 3D sphere out of a bunch of triangles with Haskell / GLUT. It works quite nicely: The green one is "my" sphere, the red one is done with GLUT's renderObject Sphere'. And I can see "my" sphere is really 3D when I move the camera around, so that's fine.
So why does the GLUT one has nice lighting, and mine has not? (I'm a newbie and do not really know what I'm doing below in initGL, copied that stuff from Hackage's cuboid package...)

Here's the code:
module Main where
import Graphics.UI.GLUT 
main :: IO ()
main = do
  initGL
  displayCallback $= render
  mainLoop
initGL :: IO ()
initGL = do
    getArgsAndInitialize
    initialDisplayMode $= [DoubleBuffered]
    createWindow "Chip!"
    initialDisplayMode $= [ WithDepthBuffer ]
    depthFunc          $= Just Less
    clearColor         $= Color4 0 0 0 0
    light (Light 0)    $= Enabled
    lighting           $= Enabled 
    lightModelAmbient  $= Color4 0.5 0.5 0.5 1 
    diffuse (Light 0)  $= Color4 1 1 1 1
    blend              $= Enabled
    blendFunc          $= (SrcAlpha, OneMinusSrcAlpha) 
    colorMaterial      $= Just (FrontAndBack, AmbientAndDiffuse)
    reshapeCallback    $= Just resizeScene
    return () 
render :: DisplayCallback
render = do
    clear [ ColorBuffer, DepthBuffer ]
    loadIdentity
    color $ Color3 (1 :: GLdouble) 1 1
    position (Light 0) $= Vertex4 0 50 (50) 1  
    preservingMatrix $ do 
        translate $ Vector3 ((-0.5) :: GLfloat) (-0.5) (-5)
        color green
        ball 12 8 0.03
    preservingMatrix $ do 
        translate $ Vector3 (0.5 :: GLfloat) 0.5 (-5)
        color red
        renderObject Solid (Sphere' 0.25 20 20)
    flush
    swapBuffers
    where green  = Color4 0.8 1.0 0.7 0.9 :: Color4 GLdouble
          red    = Color4 1.0 0.7 0.8 1.0 :: Color4 GLdouble
vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = vertex $ Vertex3 x y z
upperInnerCircle :: Int -> [(GLfloat, GLfloat)]
upperInnerCircle numSegs =
    concat [[(0,0)
            ,(cos a, sqrt(1-(cos a)*(cos a)))
            ,(cos b, sqrt(1-(cos b)*(cos b)))] 
                 | (a,b)<-as ]
    where 
        seg'=pi/(fromIntegral numSegs)
        as = [(fromIntegral n * seg', fromIntegral (n+1) * seg') | n<-[0..numSegs-1]]
lowerInnerCircle :: Int -> [(GLfloat, GLfloat)]
lowerInnerCircle numSegs =
    map (\(x,y) -> (x,-y)) $ upperInnerCircle numSegs
innerCircle :: Int -> [(GLfloat, GLfloat)]
innerCircle numSegs = upperInnerCircle numSegs ++ (lowerInnerCircle numSegs)
upperOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
upperOutSegment numSegs ring seg =
   [x,y,u, u,v,y]
    where 
        seg'=pi/(fromIntegral numSegs)
        (a, b)  = (fromIntegral seg * seg', fromIntegral (seg+1) * seg')
        x =  (fromIntegral ring * cos a, fromIntegral ring * sqrt(1-(cos a)*(cos a)))
        y = (fromIntegral ring * cos b, fromIntegral ring * sqrt(1-(cos b)*(cos b)))
        u =  (fromIntegral (ring+1) * cos a, fromIntegral (ring+1) * sqrt(1-(cos a)*(cos a)))
        v = (fromIntegral (ring+1) * cos b, fromIntegral (ring+1) * sqrt(1-(cos b)*(cos b)))
lowerOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
lowerOutSegment numSegs ring seg =
    map (\(x,y) -> (x,-y)) $ upperOutSegment numSegs ring seg 
outSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
outSegment numSegs ring seg = upperOutSegment numSegs ring seg ++ (lowerOutSegment numSegs ring seg)
outerRing :: Int -> Int -> [(GLfloat, GLfloat)]
outerRing numSegs ring =
    concat [outSegment numSegs ring n | n<-[0..numSegs-1]] 
ball numSegs numRings factor =
  let ips = innerCircle numSegs
      ops = concat [outerRing numSegs i | i<-[1..numRings]]
      height dir ps = 
           map (\(x,y) -> 
                  let dist = sqrt(x*x+y*y)/(fromIntegral (numRings+1))
                      height' = sqrt(1.001-dist*dist)*factor*(fromIntegral (numRings+1))
                  in (x*factor,y*factor,dir*height')) $ ps
      ups = height 1 $ ips ++ ops
      lps = height (-1) $ ips ++ ops
  in  renderPrimitive Triangles $ mapM_ vertex3f (ups++lps)
resizeScene :: Size -> IO ()
resizeScene (Size w 0) = resizeScene (Size w 1) -- prevent divide by zero
resizeScene s@(Size width height) = do
  viewport   $= (Position 0 0, s)
  matrixMode $= Projection
  loadIdentity
  perspective 45 (w2/h2) 1 1000
  matrixMode $= Modelview 0
  flush
 where
   w2 = half width
   h2 = half height
   half z = realToFrac z / 2
EDIT: Works now, thanks to Spektre!
Here's the pic:

And here's the code:
module Main where
import Graphics.UI.GLUT 
main :: IO ()
main = do
  initGL
  displayCallback $= render
  mainLoop
initGL :: IO ()
initGL = do
    getArgsAndInitialize
    initialDisplayMode $= [DoubleBuffered]
    createWindow "Chip!"
    initialDisplayMode $= [ WithDepthBuffer ]
    depthFunc          $= Just Less
    clearColor         $= Color4 0 0 0 0
    light (Light 0)    $= Enabled
    lighting           $= Enabled 
    lightModelAmbient  $= Color4 0.5 0.5 0.5 1 
    diffuse (Light 0)  $= Color4 1 1 1 1
    blend              $= Enabled
    blendFunc          $= (SrcAlpha, OneMinusSrcAlpha) 
    colorMaterial      $= Just (FrontAndBack, AmbientAndDiffuse)
    reshapeCallback    $= Just resizeScene
    return () 
render :: DisplayCallback
render = do
    clear [ ColorBuffer, DepthBuffer ]
    loadIdentity
    color $ Color3 (1 :: GLdouble) 1 1
    position (Light 0) $= Vertex4 0 50 (50) 1  
    preservingMatrix $ do 
        translate $ Vector3 ((-0.5) :: GLfloat) (-0.5) (-5)
        color green
        ball 12 8 0.03
    preservingMatrix $ do 
        translate $ Vector3 (0.5 :: GLfloat) 0.5 (-5)
        color red
        renderObject Solid (Sphere' 0.25 20 20)
    flush
    swapBuffers
    where green  = Color4 0.8 1.0 0.7 0.9 :: Color4 GLdouble
          red    = Color4 1.0 0.7 0.8 1.0 :: Color4 GLdouble
pushTriangle :: ((GLfloat, GLfloat, GLfloat) 
                ,(GLfloat, GLfloat, GLfloat) 
                ,(GLfloat, GLfloat, GLfloat)) -> 
                IO ()
pushTriangle (p0, p1, p2) = do
    let (_,d0,_)=p0
    let (_,d1,_)=p1
    let (_,d2,_)=p2
    --if it points upwards, reverse normal
    let d=if d0+d1+d2>0 then (-1) else 1
    let n = cross (minus p1 p0) (minus p2 p1)
    let nL = 1/lenVec n
    let (n1, n2, n3) = scaleVec n (nL*d)
    normal $ Normal3 n1 n2 n3
    vertex3f p0
    vertex3f p1
    vertex3f p2
vertex3f :: (GLfloat, GLfloat, GLfloat) -> IO ()
vertex3f (x, y, z) = 
   vertex $ Vertex3 x y z
lenVec (a1,a2,a3) = sqrt $ a1*a1 + a2*a2 + a3*a3
scaleVec (a1,a2,a3) x = (a1*x,a2*x,a3*x)
cross (a1,a2,a3) (b1,b2,b3) =
   (a2*b3-a3*b2
   ,a3*b1-a1*b3
   ,a1*b2-a2*b1)
minus (a1,a2,a3) (b1,b2,b3) =
  (a1-b1, a2-b2, a3-b3)
upperInnerCircle :: Int -> [(GLfloat, GLfloat)]
upperInnerCircle numSegs =
    concat [[(cos a, sqrt(1-(cos a)*(cos a)))
            ,(0,0)
            ,(cos b, sqrt(1-(cos b)*(cos b)))] 
                 | (a,b)<-as ]
    where 
        seg'=pi/(fromIntegral numSegs)
        as = [(fromIntegral n * seg', fromIntegral (n+1) * seg') | n<-[0..numSegs-1]]
lowerInnerCircle :: Int -> [(GLfloat, GLfloat)]
lowerInnerCircle numSegs =
    map (\(x,y) -> (x,-y)) $ upperInnerCircle numSegs
innerCircle :: Int -> [(GLfloat, GLfloat)]
innerCircle numSegs = upperInnerCircle numSegs ++ (lowerInnerCircle numSegs)
upperOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
upperOutSegment numSegs ring seg =
   [x,y,u, v,u,y]
    where 
        seg'=pi/(fromIntegral numSegs)
        (a, b)  = (fromIntegral seg * seg', fromIntegral (seg+1) * seg')
        x =  (fromIntegral ring * cos a, fromIntegral ring * sqrt(1-(cos a)*(cos a)))
        y = (fromIntegral ring * cos b, fromIntegral ring * sqrt(1-(cos b)*(cos b)))
        u =  (fromIntegral (ring+1) * cos a, fromIntegral (ring+1) * sqrt(1-(cos a)*(cos a)))
        v = (fromIntegral (ring+1) * cos b, fromIntegral (ring+1) * sqrt(1-(cos b)*(cos b)))
lowerOutSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
lowerOutSegment numSegs ring seg =
    map (\(x,y) -> (x,-y)) $ upperOutSegment numSegs ring seg 
outSegment :: Int -> Int -> Int -> [(GLfloat, GLfloat)]
outSegment numSegs ring seg = upperOutSegment numSegs ring seg ++ (lowerOutSegment numSegs ring seg)
outerRing :: Int -> Int -> [(GLfloat, GLfloat)]
outerRing numSegs ring =
    concat [outSegment numSegs ring n | n<-[0..numSegs-1]] 
ball numSegs numRings factor =
  let ips = innerCircle numSegs
      ops = concat [outerRing numSegs i | i<-[1..numRings]]
      height dir ps = 
           map (\(x,y) -> 
                  let dist = sqrt(x*x+y*y)/(fromIntegral (numRings+1))
                      height' = sqrt(1.001-dist*dist)*factor*(fromIntegral (numRings+1))
                  in (x*factor,y*factor,dir*height')) $ ps
      ups = height 1 $ ips ++ ops
      lps = height (-1) $ ips ++ ops
  in  renderPrimitive Triangles $ mapM_ pushTriangle (toTriples (ups++lps))
toTriples :: [a] -> [(a,a,a)]
toTriples [] = []
toTriples (a:b:c:rest) = (a,b,c):toTriples rest 
resizeScene :: Size -> IO ()
resizeScene (Size w 0) = resizeScene (Size w 1) -- prevent divide by zero
resizeScene s@(Size width height) = do
  viewport   $= (Position 0 0, s)
  matrixMode $= Projection
  loadIdentity
  perspective 45 (w2/h2) 1 1000
  matrixMode $= Modelview 0
  flush
 where
   w2 = half width
   h2 = half height
   half z = realToFrac z / 2
