I am using sklearn's DictVectorizer to construct a large, sparse feature matrix, which is fed to an ElasticNet model. Elastic net (and similar linear models) work best when predictors (columns in the feature matrix) are centered and scaled. The recommended approach is to build a Pipeline that uses a StandardScaler prior to the regressor, however that doesn't work with sparse features, as stated in the docs.
I thought to use the normalize=True flag in ElasticNet which seems to support sparse data, however it's not clear whether the normalization is applied during prediction to the test data as well. Does anyone know if normalize=True applies for prediction as well? If not, is there a way to use the same standardization on the training and test set when dealing with sparse features?