You have a couple of options. 
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10,6))
# Make a few areas have NaN values
df.iloc[1:3,1] = np.nan
df.iloc[5,3] = np.nan
df.iloc[7:9,5] = np.nan
Now the data frame looks something like this:
          0         1         2         3         4         5
0  0.520113  0.884000  1.260966 -0.236597  0.312972 -0.196281
1 -0.837552       NaN  0.143017  0.862355  0.346550  0.842952
2 -0.452595       NaN -0.420790  0.456215  1.203459  0.527425
3  0.317503 -0.917042  1.780938 -1.584102  0.432745  0.389797
4 -0.722852  1.704820 -0.113821 -1.466458  0.083002  0.011722
5 -0.622851 -0.251935 -1.498837       NaN  1.098323  0.273814
6  0.329585  0.075312 -0.690209 -3.807924  0.489317 -0.841368
7 -1.123433 -1.187496  1.868894 -2.046456 -0.949718       NaN
8  1.133880 -0.110447  0.050385 -1.158387  0.188222       NaN
9 -0.513741  1.196259  0.704537  0.982395 -0.585040 -1.693810
- Option 1: df.isnull().any().any()- This returns a boolean value
You know of the isnull() which would return a dataframe like this:
       0      1      2      3      4      5
0  False  False  False  False  False  False
1  False   True  False  False  False  False
2  False   True  False  False  False  False
3  False  False  False  False  False  False
4  False  False  False  False  False  False
5  False  False  False   True  False  False
6  False  False  False  False  False  False
7  False  False  False  False  False   True
8  False  False  False  False  False   True
9  False  False  False  False  False  False
If you make it df.isnull().any(), you can find just the columns that have NaN values:
0    False
1     True
2    False
3     True
4    False
5     True
dtype: bool
One more .any() will tell you if any of the above are True
> df.isnull().any().any()
True
- Option 2: df.isnull().sum().sum()- This returns an integer of the total number ofNaNvalues:
This operates the same way as the .any().any() does, by first giving a summation of the number of NaN values in a column, then the summation of those values:
df.isnull().sum()
0    0
1    2
2    0
3    1
4    0
5    2
dtype: int64
Finally, to get the total number of NaN values in the DataFrame:
df.isnull().sum().sum()
5