First save all combinations with repetitions in a cell array. In order to do that, just use nmultichoosek.
v = 1 : 8;
combs = cell(length(v),0);
for i = v
combs{i} = nmultichoosek(v,i);
end
In this way, each element of combs contains a matrix where each row is a combination. For instance, the i-th row of combs{4} is a combination of four numbers.
Now you need to check the sum. In order to do that to all the combinations, use cellfun
sums = cellfun(@(x)sum(x,2),combs,'UniformOutput',false);
sums contains the vectors with the sum of all combinations. For
instance, sums{4} has the sum of the number in combination combs{4}.
The next step is check for the fixed sum.
fixed_sum = 10;
indices = cellfun(@(x)x==fixed_sum,sums,'UniformOutput',false);
indices contains arrays of logical values, telling if the combination satisfies the fixed sum. For instance, indices{4}(1) tells you if the first combination with 4 numbers sums to fixed_sum.
Finally, retrieve all valid combinations in a new cell array, sorting them at the same time.
valid_combs = cell(length(v),0);
for i = v
idx = indices{i};
c = combs{i};
valid_combs{i} = sortrows(c(idx,:));
end
valid_combs is a cell similar to combs, but with only combinations that sum up to your desired value, and sorted by the number of numbers used: valid_combs{1} has all valid combinations with 1 number, valid_combs{2} with 2 numbers, and so on. Also, thanks to sortrows, combinations with the same amount of numbers are also sorted. For instance, if fixed_sum = 10 then valid_combs{8} is
1 1 1 1 1 1 1 3
1 1 1 1 1 1 2 2
This code is quite efficient, on my very old laptop I am able to run it in 0.016947 seconds.