I have the data that looks like this:
   topic  positive  negative     type
0     88  0.080000  0.030000   source
1     36  0.010000  0.200000   source
2    101  0.350000  0.040000   source
3     78  0.110000  0.090000   source
4     99  0.110000  0.010000   source
5     79  0.000000  0.050000   source
6     24  0.000000  0.160000   source
7     17  0.000000  0.410000   source
8     14  0.090000  0.050000   source
9     29  0.060000  0.030000   source
0     14  0.207071  0.085859  summary
1     17  0.000000  0.738889  summary
2     24  0.000000  0.219349  summary
3     29  0.000000  0.094907  summary
4     36  0.000000  0.255808  summary
5     78  0.108333  0.194444  summary
6     79  0.000000  0.106443  summary
7     88  0.089286  0.041667  summary
8     99  0.098496  0.050877  summary
9    101  0.444444  0.055556  summary
I need to draw a bar plot that compares positive/negative values for different type for each topic. I see it like stacked (positive/negative) barplot with topic on x axis and bars are grouped using type column. But I could not find a way to build both grouped and stacked bar plot.
For single type in looks like this (sorry I don't have enough reputation to post images):
polar_data.set_index(['type', 'topic']).xs('summary').plot(kind='bar', stacked=True)
And the only way I currently could compare two different types is only by placing two plots side by side using seaborn.factorplot, which doesn't allow to clearly notice the trends. And also I don't know how to build stacked bar plot with seaborn.
print_data = pd.melt(polar_data, id_vars=['topic', 'type'], value_name='percent', var_name='polarity')
sns.factorplot("topic", 'percent', 'polarity', row="type", data=print_data, margin_titles=True, kind='bar')
So it there a way to "merge" them instead of place side by side?

