How should I transform from datetime to string? My attempt:
dates = p.to_datetime(p.Series(['20010101', '20010331']), format = '%Y%m%d')
dates.str
How should I transform from datetime to string? My attempt:
dates = p.to_datetime(p.Series(['20010101', '20010331']), format = '%Y%m%d')
dates.str
 
    
     
    
    There is no .str accessor for datetimes and you can't do .astype(str) either.
Instead, use .dt.strftime:
>>> series = pd.Series(['20010101', '20010331'])
>>> dates = pd.to_datetime(series, format='%Y%m%d')
>>> dates.dt.strftime('%Y-%m-%d')
0    2001-01-01
1    2001-03-31
dtype: object
See the docs on customizing date string formats here: strftime() and strptime() Behavior.
For old pandas versions <0.17.0, one can instead can call .apply with the Python standard library's datetime.strftime:
>>> dates.apply(lambda x: x.strftime('%Y-%m-%d'))
0    2001-01-01
1    2001-03-31
dtype: object
 
    
     
    
    As of pandas version 0.17.0, you can format with the dt accessor:
dates.dt.strftime('%Y-%m-%d')
 
    
     
    
    There is a pandas function that can be applied to DateTime index in pandas data frame.
date = dataframe.index #date is the datetime index
date = dates.strftime('%Y-%m-%d') #this will return you a numpy array, element is string.
dstr = date.tolist() #this will make you numpy array into a list
the element inside the list:
u'1910-11-02'
You might need to replace the 'u'.
There might be some additional arguments that I should put into the previous functions.