If you use tostring you lose information on both shape and data type:
>>> import numpy as np
>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> s = a.tostring()
>>> aa = np.fromstring(a)
>>> aa
array([  0.00000000e+000,   4.94065646e-324,   9.88131292e-324,
         1.48219694e-323,   1.97626258e-323,   2.47032823e-323,
         2.96439388e-323,   3.45845952e-323,   3.95252517e-323,
         4.44659081e-323,   4.94065646e-323,   5.43472210e-323])
>>> aa = np.fromstring(a, dtype=int)
>>> aa
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])
>>> aa = np.fromstring(a, dtype=int).reshape(3, 4)
>>> aa
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
This means you have to send the metadata along with the data to the recipient. To exchange auto-consistent objects, try cPickle:
>>> import cPickle
>>> s = cPickle.dumps(a)
>>> cPickle.loads(s)
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])