Generate as many distinct primes P such that reverse (P) is also prime and is not equal to P.
Output: Print per line one integer( ≤ 10^15 ). Don't print more than 10^6 integers in all.
Scoring: Let N = correct outputs. M = incorrect outputs. Your score will be max(0,N-M).
Note: Only one of P and reverse(P) will be counted as correct. If both are in the file, one will be counted as incorrect.
Sample Output 107 13 31 17 2
Explanation
Score will be 1. Since 13,107,17 are correct. 31 is incorrect because 13 is already there. 2 is incorrect.
Here is the code I've written which is giving me output Out Of Memory error in Eclipse.
Since memory requirement is 256 MB, I set -Xmx256M, but since it's giving me an Out Of Memory error, I must have misunderstood the question or my code is buggy in terms of memory utilization.  What am I doing wrong here?  I'm getting the desired output for smaller  lONGMAX like 10000 or 1000000.
public class ReversePrime {
    final static long lONGMAX=1000000000000000L;
    final static int MAXLISTSIZE=1000000;
    final static boolean[] isPrime=isPrime();
    public static void main(String...strings ){
        Set<Long> reversedCheckedPrime = new LinkedHashSet<Long>();
        int isPrimeLength=isPrime.length;
        for(int i = 0; i < isPrimeLength ; i++){
            if( isPrime[i]){
                long prime = 2 * i + 3;
                long revrse= reversePrime(prime);
                if ( (!(prime==revrse)) && (!reversedCheckedPrime.contains(revrse)) && 
                        (reversedCheckedPrime.size()<=MAXLISTSIZE)){
                    reversedCheckedPrime.add(prime);
                }
                if (reversedCheckedPrime.size()==MAXLISTSIZE){
                    break;
                }
            }
        }   
        for (Long prime : reversedCheckedPrime){
            System.out.println(prime);
        }
    }
    private static long reversePrime(long prime) {
        long result=0;
        long rem;
        while(prime!=0){
            rem = prime % 10;
            prime = prime / 10;
            result = result * 10 + rem ;
        }
        return result;
    }
    private static boolean[] isPrime() {
        int root=(int) Math.sqrt(lONGMAX)+1;
        root = root/2-1;
        int limit= (int) ((lONGMAX-1)/2);
        boolean[] isPrime=new boolean[limit];
        Arrays.fill(isPrime, true);
        for(int i = 0 ; i < root ; i++){
            if(isPrime[i]){
                for( int j = 2 * i * (i + 3 ) + 3, p = 2 * i + 3; j < limit ; j = j + p){
                    isPrime[j] = false;
                }
            }
        }
        return isPrime;
    }
}
 
     
     
     
    