I am using R for analysis. My data is as follows:
  id    timestamp   cumsum
1284381 21/01/2015  33
1284381 21/01/2015  57
1284381 2/3/2015    79
1284381 4/3/2015    203
1284381 25/03/2015  475
1284381 11/4/2015   578
1284381 17/04/2015  856
1284381 21/04/2015  1189
1284381 5/5/2015    1214
1284381 10/5/2015   1321
1284381 12/5/2015   1340
1284381 15/05/2015  1529
1284381 18/05/2015  1649
1284381 19/05/2015  1977
1284381 21/05/2015  2385
1284381 23/05/2015  2528
1284381 26/05/2015  2556
1284381 29/05/2015  2705
1284381 1/6/2015    2898
1284381 4/6/2015    2913
1284381 7/6/2015    2921
1284381 13/06/2015  2922
1284381 13/06/2015  3622
1284381 16/06/2015  3834
1284381 19/06/2015  3913
1284895 27/01/2015  6
1284895 27/01/2015  49
1284895 18/03/2015  57
1284895 20/03/2015  58
1284895 23/03/2015  59
1284895 23/03/2015  60
1284895 24/03/2015  62
1284895 29/03/2015  67
1284895 31/03/2015  75
1284895 1/4/2015    76
1284895 2/4/2015    77
1284895 8/4/2015    78
1284895 16/04/2015  80
1284895 21/04/2015  103
1284895 23/04/2015  275
1284895 26/04/2015  293
1284895 27/04/2015  386
1284895 30/04/2015  539
1284895 3/5/2015    807
1284895 8/5/2015    851
1284895 11/5/2015   988
1284895 14/05/2015  1056
1284895 18/05/2015  1157
1284895 21/05/2015  1226
1284895 23/05/2015  1383
1284895 26/05/2015  1501
1284895 30/05/2015  1518
1284895 2/6/2015    1694
1284895 4/6/2015    1695
1284895 8/6/2015    1858
1284895 11/6/2015   1909
1284895 14/06/2015  1917
1284895 17/06/2015  1957
1284895 20/06/2015  1973
The first column is ID, second is date and third is cumulative sum of the value. I want to build a forecasting model to this data, which can provide me a solution of, for a given id, at a future date(say. 08/08/2015), the cumsum would be ?? I have tried forecasting models with two variables. Since it is three variables and also the data is daily data and not continuous, I am facing difficulties in setting up the model.
 
     
    
 
    
