Abstract
Hi, suppose you have 128 bit automata (represented by four 32 bit words X, Y, Z, W) that changes it's state according to a following rule:
X = ...
Y = ...
Z = ...
W = ...
void next()
{
var t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
W = W ^ (W >> 19) ^ (t ^ (t >> 8));
}
^ - denotes binary XOR operation
<< - denotes binary shift left operation
>> - denotys binary shift right operation
It is guaranteed that the above automata generates no collisions i.e. each state is a result of one (and only one) previous state. It is also guaranteed that the above state machine produces 2^128 unique states.
Question
For any given state (X,Y,Z,W) produce inverse to next, (i.e. prev) operation that would revert the state to previous one.
In other words, if you have the following state (X=1, Y=2, Z=3, W=4) and will call next, the state will change to (X=2, Y=3, Z=4, W=2061), it is supposed that after calling prev the state should be equal again to (X=1, Y=2, Z=3, W=4).
P.S.
The next operation is one of the implementations to XorShift pseudorandom number generators that was discovered by George Marsaglia
https://en.wikipedia.org/wiki/Xorshift
The inverse to this operation would be very useful in general, consider the implications of Guid.Next(...), Guid.Prev(...) availability
Edit
I have somewhat improved Niklas B.'s original answer and ported result to C#, so here's the final piece of code, hope someone will benefit from Random.Next() and Random.Prev() operations:
public class Xor128
{
public UInt32 X { get; set; }
public UInt32 Y { get; set; }
public UInt32 Z { get; set; }
public UInt32 W { get; set; }
public Xor128()
{
}
public Xor128(UInt32 x, UInt32 y, UInt32 z, UInt32 w)
{
X = x;
Y = y;
Z = z;
W = w;
}
//private UInt32 UnXorShl(UInt32 x, Int32 shift)
//{
// for (var i = shift; i < 32; i <<= 1) {
// x ^= x << i;
// }
// return x;
//}
//private UInt32 UnXorShr(UInt32 x, Int32 shift)
//{
// for (var i = shift; i < 32; i <<= 1) {
// x ^= x >> i;
// }
// return x;
//}
//public UInt32 Prev()
//{
// var t = UnXorShr(W ^ Z ^ (Z >> 19), 8);
// W = Z;
// Z = Y;
// Y = X;
// X = UnXorShl(t, 11);
// return W;
//}
public UInt32 Prev()
{
var t = W ^ Z ^ (Z >> 19);
t ^= t >> 8;
t ^= t >> 16;
W = Z;
Z = Y;
Y = X;
t ^= t << 11;
t ^= t << 22;
X = t;
return W;
}
public UInt32 Curr()
{
return W;
}
public UInt32 Next()
{
UInt32 t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
return W = W ^ (W >> 19) ^ (t ^ (t >> 8));
}
}
btw. Here's a swift version:
public class Xor128 {
public var X: UInt32
public var Y: UInt32
public var Z: UInt32
public var W: UInt32
public convenience init(uuid: uuid_t) {
let xa = (UInt32(uuid.0 ) << 24)
let xb = (UInt32(uuid.1 ) << 16)
let xc = (UInt32(uuid.2 ) << 8 )
let xd = (UInt32(uuid.3 ) << 0 )
let ya = (UInt32(uuid.4 ) << 24)
let yb = (UInt32(uuid.5 ) << 16)
let yc = (UInt32(uuid.6 ) << 8 )
let yd = (UInt32(uuid.7 ) << 0 )
let za = (UInt32(uuid.8 ) << 24)
let zb = (UInt32(uuid.9 ) << 16)
let zc = (UInt32(uuid.10) << 8 )
let zd = (UInt32(uuid.11) << 0 )
let wa = (UInt32(uuid.12) << 24)
let wb = (UInt32(uuid.13) << 16)
let wc = (UInt32(uuid.14) << 8 )
let wd = (UInt32(uuid.15) << 0)
self.init(
x: xa + xb + xc + xd,
y: ya + yb + yc + yd,
z: za + zb + zc + zd,
w: wa + wb + wc + wd
)
}
public convenience init(uuid: UUID) {
self.init(uuid: uuid.uuid)
}
public init(x: UInt32, y: UInt32, z: uint32, w: UInt32) {
X = x
Y = y
Z = z
W = w
}
@discardableResult
public func next() -> UInt32 {
let t = X ^ (X << 11);
X = Y;
Y = Z;
Z = W;
W = W ^ (W >> 19) ^ (t ^ (t >> 8))
return W;
}
public var curr: UInt32 {
return W
}
@discardableResult
public func prev() -> UInt32 {
var t = W ^ Z ^ (Z >> 19);
t ^= t >> 8;
t ^= t >> 16;
W = Z;
Z = Y;
Y = X;
t ^= t << 11;
t ^= t << 22;
X = t;
return W;
}
}