Problem:
- I need to compare 2 hash table implementations (well basically - HashMapwith another one) and make a reasonable conclusion.
- I am not interested in 100% accuracy but just being in the right direction in my estimation. 
- I am interested in the difference not only per operation but mainly on the hashtable as a "whole". 
- I don't have a strict requirement on speed so if the other implementation is reasonably slower I can accept it but I do expect/require that the memory usage be better (since one of the hashtables is backed by primitive table). 
What I did so far:
Originally I created my own custom "benchmark" with loops and many calls to hint for gc to get a feeling of the difference but I am reading online that using a standard tool is more reliable/appropriate.
Example of my approach (MapInterface is just a wrapper so I can switch among implementations.):  
int[] keys = new int[10000000];
String[] values = new String[10000000];  
for(int i = 0; i < keys.length; ++i) {  
   keys[i] = i;  
   values[i] = "" + i;
}
if(operation.equals("put", keys, values)) {  
   runPutOperation(map);  
}  
public static long[] runOperation(MapInterface map, Integer[] keys, String[] values) {  
    long min = Long.MAX_VALUE;  
    long max = Long.MIN_VALUE;  
    long run = 0;  
    for(int i = 0; i < 10; ++i) {  
       long start = System.currentTimeMillis();  
       for(int i = 0; i < keys.length; ++i) {          
            map.put(keys[i], values[i]);  
        }
        long total = System.currentTimeMillis() - start;  
        System.out.println(total/1000d + " seconds");    
        if(total < min) {
            min = time;
        }
        if(total > max) {
            max = time;
         }
         run += time;  
         map = null;  
         map = createNewHashMap();
         hintsToGC();    
   }  
  return new long[] {min, max, run};
 }     
public void hintsToGC() {  
    for(int i = 0; i < 20; ++i) {
            System.out.print(". ");
            System.gc();            
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {              
                e.printStackTrace();
          }           
       } 
}
private HashMapInterface<String> createNewHashMap() {  
    if(jdk) {  
        return new JDKHashMapWrapper<String>();  
    }  
    else {
        return new AlternativeHashMapWrapper<String>();   
    }  
 }  
public class JDKHashMapWrapper implements HashMapInterface<String>  {
    HashMap<Integer, String> hashMap;         
    JDKHashMapWrapper() {   
       hashMap = new HashMap<Integer, String>();  
    }  
    public String put(Integer key, String value)  {
       return hashMap.put(key, value);  
    }  
 //etc  
}
(I want to test put, get, contains and the memory utilization)
Can I be sure by using my approach that I can get reasonable measurements?
If not what would be the most appropriate tool to use and how?    
Update:
- I also test with random numbers (also ~10M random numbers) using SecureRandom.
- When the hash table resizes I print the logical size of the hash table/size of the actual table to get the load factor  
Update:
For my specific case, where I am interested also in integers what can of pitfalls are there with my approach?  
UPDATE after @dimo414 comments:
Well at a minimum the hashtable as a "whole" isn't meaningful
I mean how the hashtable behaves under various loads both at runtime and in memory consumption.
Every data structure is a tradeoff of different methods
I agree. My trade-off is an acceptable access penalty for memory improvement
You need to identify what features you're interested in verifying
1) put(key, value);
2) get(key, value);
3) containsKey(key);
4) all the above when having many entries in the hash table  
 
     
     
    