I think Eric answered your primary question on how to convert the SecByteBlock to a std::string (including the explicit conversions between char* and byte*). But here's how you might approach std::string token = std::string(iv.begin(), iv.end()) + userAccess; issue.
string token;
SecByteBlock iv(16), userAccess(16);
OS_GenerateRandomBlock(false, iv, iv.size());
OS_GenerateRandomBlock(false, userAccess, userAccess.size());
SecByteBlock nil;
nil.CleanNew(HMAC<SHA256>::DEFAULT_KEYLENGTH);
HMAC<SHA256> hmac;
hmac.SetKey(nil.data(), nil.size());
HashFilter filter(hmac, new HexEncoder(new StringSink(token)));
filter.Put(iv.data(), iv.size());
filter.Put(userAccess.data(), userAccess.size());
filter.MessageEnd();
cout << token << endl;
The SecByteBlock nil creates an object with no memory or size. The nil.CleanNew(HMAC<SHA256>::DEFAULT_KEYLENGTH) sizes and initializes the SecByteBlock to 0. Otherwise, you have an uninitialized block of memory.
It is possible to declare it and size it with a 0-inialized array, but you have to be familiar with the sources because its no Doxygen-docimented as of Crypto++ 5.6.2. That way is to use a NULL pointer, but a non-0 size. Here's what it would look like, but its very non-intuitive:
SecByteBlock nil(NULL, HMAC<SHA256>::DEFAULT_KEYLENGTH);
The trick relies on this SecBlock<T> constructor:
00250    SecBlock(const T *t, size_type len)
00251        : m_size(len)
00252    {
00253        m_ptr = m_alloc.allocate(len, NULL);
00254        if (t == NULL)
00255            memset_z(m_ptr, 0, len*sizeof(T));
00256        else
00257            memcpy(m_ptr, t, len*sizeof(T));
00258    }
If possible, you should use HKDF instead of the HMAC<SHA> with a nil vector to extract the entropy from the security parameters. You can find the HKDF in the repo at the HKDF class. Its a stand alone header, so it will "just work".
A typical run of the program with random values for iv and userAccess is:
$ ./cryptopp-test.exe
061CF705259058C4E01A2BF22830FC3F2A7E97F12FE605B38405B1E1B19A9E0F
Another way to approach it could be concatenation based on SecByteBlock's operator +=. The result is a binary string, and not a human readable ASCII string.
SecByteBlock result;
result += iv;
result += SecByteBlock(userAccess.data(), userAccess.size());
string token(result.data(), result.size());
If you need a human readable string, then run it through a HexEncoder:
HexEncoder hex(new StringSink(token));
hex.Put(result.data(), result.size());
hex.MessageEnd();
But it does not extract the entropy from the parameters, so I personally like it less.
When you move from a SecByteBlock to a std::string, you effectively lose your secure allocator. That means the data in the copies will not be zeroized after egressing data to the string object.
The HexEncoder is a convenience item, and it allows you to dump the binary string.
Another useful one might be the Base64URLEncoder. It uses the web safe alphabet.