I am trying to implement MLE for Gaussian mixtures in R using optim() using R's local datasets (Geyser from MASS). My code is below. The issue is that optim works fine however, returns the original parameters that I pass to it and also says that it has converged. I would appreciate if you can point out where I am going off track. My expectation is that it would at least yield different results if not wildly different.
library(ggplot2)
library(MASS)
data("geyser")
externaldata=geyser$waiting
x.vector=externaldata
MLE.x= function(combined.vector)
{ combined.vector=bigvec
  x.vector = externaldata
  K = k #capital K inside this MLE function, small K defined in the global environment
  prob.vector = combined.vector[1:K] 
  mu.vector =combined.vector[(K+1):((2*K))]
  sd.vector=combined.vector[(2*K+1):(3*K)]
  prob=matrix(rep(prob.vector,length(x.vector)),byrow=TRUE,nrow = length(x.vector))
  mu.sigma=cbind(mu.vector,sd.vector)
  x.by.K=matrix(nrow = length(x.vector), ncol = k)
  for (i in 1:K){
    x.by.K[,i]=dnorm(x.vector,mu.sigma[i,1],mu.sigma[i,2])
  }
  prob.mat=x.by.K*prob
  density=apply(prob.mat,1,sum)
  log.density=sum(-log(density))
  return(log.density)
}
## k=2 set ##
meanvec=c(50,80)
sigmavec=c(5,5)
k=2
probvec=c(1/3,2/3)
bigvec=c(probvec,meanvec,sigmavec)
est.k2.MLE=MLE.x(bigvec)
z=optim(bigvec,
        fn=MLE.x,
        method = "L-BFGS-B")
z
#### k=3 set #####
meanvec=c(50,70,80)
sigmavec=c(5,5,5)
k=3
probvec=rep(1/3,3)
bigvec=c(probvec,meanvec,sigmavec)
est.k3.MLE=MLE.x(bigvec)
z=optim(bigvec,
        fn=MLE.x,
        method = "BFGS")
z
 
    