We can use n_distinct from dplyr.  We group by 'Tid', and get the n_distinct for 'Uid' within summarise.
library(dplyr)
Data %>% 
   group_by(Tid) %>%
   summarise(freqUid=n_distinct(Uid))
#    Tid freqUid
#   (dbl)   (int)
#1     1       1
#2     2       2
#3     3       1
#4     4       2
Or we can use uniqueN from data.table.  We convert the 'data.frame' to 'data.table' (setDT(Data)), grouped by 'Tid', we get the uniqueN of 'Uid'.
library(data.table)#v1.9.5+
setDT(Data)[, list(freqUid=uniqueN(Uid)), by = Tid]
#  Tid freqUid
#1:   1       1
#2:   2       2
#3:   3       1
#4:   4       2
Benchmarks
Here are some benchmarks using a big dataset
set.seed(24)
Data <- data.frame(Tid=rep(1:1e4, each=100),
       Uid= sample(10:70, 1e4*100, replace=TRUE))
f1 <- function() as.data.frame.table(with(Data, 
          tapply(Uid, Tid, function(.) length(unique(.)))))
f2 <- function() as.data.frame(table(unique(Data)$Tid))
f3 <- function() aggregate(Uid ~ Tid, unique(Data), length)
f4 <- function() Data %>% 
                    group_by(Tid) %>% 
                    summarise(freqUid=n_distinct(Uid))
f5 <- function() as.data.table(Data)[, list(freqUid=uniqueN(Uid)), by = Tid]
library(microbenchmark)
microbenchmark(f1(), f2(), f3(), f4(), f5(), times=20L, unit='relative')
#Unit: relative
# expr       min        lq      mean    median        uq       max neval cld
#f1()  2.357808  2.506813  2.347543  2.401787  2.138740  2.706053    20 a 
#f2() 10.581284 11.798583 11.456316 11.975014 11.411718 10.664648    20 b
#f3() 28.243538 27.740333 25.630334 25.042240 25.590332 23.426749    20 c
#f4()  1.000000  1.000000  1.000000  1.000000  1.000000  1.000000    20 a
#f5()  1.385114  1.369170  1.396271  1.405275  1.354914  1.473114    20 a 
If we remove the as.data.frame in f1 and f2 (the output format will be different), and run the benchmarks again.
  f1 <- function() with(Data, tapply(Uid, Tid, function(.) length(unique(.))))
  f2 <- function() table(unique(Data)$Tid)
and as @DavidArenburg mentioned, uniqueN is slower compared to length(unique(.)).  So, replacing that in f5
 f5 <- function() as.data.table(Data)[, list(freqUid=length(unique(Uid))),
                                    by = Tid]
 microbenchmark(f1(), f2(), f3(), f4(), f5(), times=20L, unit='relative')
 #Unit: relative
 #expr       min        lq      mean    median        uq        max neval  cld
 #f1()  3.466328  3.052508  2.789366  2.968971  3.069631  1.7850643    20  b  
 #f2() 11.539920 13.372543 12.067983 13.266105 13.014644  7.6774925    20   c 
 #f3() 33.491446 30.839725 27.339148 30.888726 29.953344 17.3956850    20    d
 #f4()  1.254533  1.177933  1.083263  1.213019  1.162862  0.6981573    20 a   
 #f5()  1.000000  1.000000  1.000000  1.000000  1.000000  1.0000000    20 a