TL;DR;
How do I use mllib to train my wiki data (text & category) for prediction against tweets?
I have trouble figuring out how to convert my tokenized wiki data so that it can be trained through either NaiveBayes or LogisticRegression. My goal is to use the trained model for comparison against tweets*. I've tried using pipelines with LR and HashingTF with IDF for NaiveBayes but I keep getting wrong predictions. Here's what I've tried:
*Note that I would like to use the many categories in the wiki data for my labels...I've only seen binary classification (it's one category or another)....is it possible to do what I want?
Pipeline w LR
import org.apache.spark.rdd.RDD
import org.apache.spark.SparkContext
import org.apache.spark.ml.feature.HashingTF
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.ml.feature.RegexTokenizer
case class WikiData(category: String, text: String)
case class LabeledData(category: String, text: String, label: Double)
val wikiData = sc.parallelize(List(WikiData("Spark", "this is about spark"), WikiData("Hadoop","then there is hadoop")))
val categoryMap = wikiData.map(x=>x.category).distinct.zipWithIndex.mapValues(x=>x.toDouble/1000).collectAsMap
val labeledData = wikiData.map(x=>LabeledData(x.category, x.text, categoryMap.get(x.category).getOrElse(0.0))).toDF
val tokenizer = new RegexTokenizer()
.setInputCol("text")
.setOutputCol("words")
.setPattern("/W+")
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("features")
val lr = new LogisticRegression()
.setMaxIter(10)
.setRegParam(0.01)
val pipeline = new Pipeline()
.setStages(Array(tokenizer, hashingTF, lr))
val model = pipeline.fit(labeledData)
model.transform(labeledData).show
Naive Bayes
val hashingTF = new HashingTF()
val tf: RDD[Vector] = hashingTF.transform(documentsAsWordSequenceAlready)
import org.apache.spark.mllib.feature.IDF
tf.cache()
val idf = new IDF().fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
tf.cache()
val idf = new IDF(minDocFreq = 2).fit(tf)
val tfidf: RDD[Vector] = idf.transform(tf)
//to create tfidfLabeled (below) I ran a map set the labels...but again it seems to have to be 1.0 or 0.0?
NaiveBayes.train(tfidfLabeled)
.predict(hashingTF.transform(tweet))
.collect