dplyr::tally is faster than dplyr::count. Why doesn't tally read alpha variables in a function?
for sample x for this example say:
x <- data.frame("PrecinctID" = c(101,102,103,104))
tally(x,PrecinctID == 101)[1,1] 
#[1] 919 
findy <- function(y) {tally(x,PrecinctID == y)[1,1]} 
findy(101)
#Error: object 'y' not found
findy <- function(y) {count(x,PrecinctID == y)[2,2]} 
findy(101)  
#Source: local data frame [1 x 1]
#    n
#1 919
[Self answer:]
I was able to solve my own problem. Tally accepts only tbl data. So whether you use tally or summarise, it works well to pump it through dplyr pipe (%>%) or "then" operator. Once you do that, quite complex fields embedded with queries can be orchestrated. Given x is large voter database:
tbl_df(x)
Source: local data frame [128,438 x 17] ...
StateVoterID RegistrationNumber LastName FirstName ...
uPID <- sort(unique(x$PrecinctID))  
findP <- function(y) {  
x %>%  
summarise(  
Count = sum(PrecinctID == y),  
Good = sum(AVReturnStatus == "Good" & PrecinctID == y),  
Late = sum(AVReturnChallenge == "Too Late" & PrecinctID == y))  
}  
u1 <- t(sapply(uPID,findP))  
u1 <- cbind(uPID,u1)  
head(u1)  
     uPID Count Good Late  
[1,] 101  917   476  4   
[2,] 102  630   367  8   
[3,] 103  687   482  2   
[4,] 104  439   312  1   
[5,] 105  414   252  0   
[6,] 106  778   422  2   
