I'm trying to approximate various signals using radial basis networks. In particular, I make use of MATLAB's newrb.
My problem is that this function seems to behave incorrectly if I follow the description of newrb. As I understand it, it makes sense to transpose all arguments despite the documentation.
The following example hopefully illustrates my problem.
I create one period of a sine wave with 100 samples. I would like to approximate this sine wave by means of a radial basis network with maximally two hidden neurons. I have one input vector (t) and one target vector (s). Hence, according to the documentation, I should call newrb with two column vectors. However, the approximation is too good. In fact, the mean squared error is 0 which can't be true using only two neurons. Additionally, the visualization with view(net) shows not only one but 100 inputs if I use column vectors.
In the example, the vectors corresponding to the "correct" (according to the documentation) function call are indicated by _doc, the ones corresponding to the "incorrect" call by _not_doc.
Can anybody explain this behavior?
% one period sine signal with
% carrier frequency = 1, sampling frequency = 100
Ts = 1 / 100;
t = 2 * pi * (0:Ts:1-Ts); % size(t) = 1 100
s = sin(t); % size(s) = 1 100
% design radial basis network
MSE_goal = 0.0; % mean squared error goal, default value
spread = 1.0; % spread of readial basis functions, default value
max_neurons = 2; % maximum number of neurons, custom value
DF = 25; % number of neurons to add between displays, default value
net_not_doc = newrb( t , s , MSE_goal, spread, max_neurons, DF ); % row vectors
net_doc = newrb( t', s', MSE_goal, spread, max_neurons, DF ); % column vectors
% simulate network
approx_not_doc = sim( net_not_doc, t );
approx_doc = sim( net_doc, t' );
% plot
figure;
plot( t, s, 'DisplayName', 'Sine' );
hold on;
plot( t, approx_not_doc, 'r:', 'DisplayName', 'Approximation_{not doc}');
hold on;
plot( t, approx_doc', 'g:', 'DisplayName', 'Approximation_{doc}');
grid on;
legend show;
% view neural networks
view(net_not_doc);
view(net_doc);