I am running few ml algos from sklearn. But for all those I am getting the following error
/Users//anaconda/lib/python2.7/site-packages/sklearn/utils/validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric)
    448     else:
    449         y = column_or_1d(y, warn=True)
--> 450         _assert_all_finite(y)
    451     if y_numeric and y.dtype.kind == 'O':
    452         y = y.astype(np.float64)
/Users//anaconda/lib/python2.7/site-packages/sklearn/utils/validation.pyc in _assert_all_finite(X)
     50             and not np.isfinite(X).all()):
     51         raise ValueError("Input contains NaN, infinity"
---> 52                          " or a value too large for %r." % X.dtype)
     53 
     54 
ValueError: Input contains NaN, infinity or a value too large for dtype('float64')
Please note that my design matrix has no nan or infinite value. Here is what I did to check:
np.isfinite(X_cohort_pr).all()
Out[259]:
True
X.isnull().any().any()
Out[261]:
False
So if you see my data matrix has no null or infinite values. then why I am getting this error and how to resolve this?. This has taken me more than 8 hours in debugging it.Please help
EDIT2:
Here is the first five rows of the data matrix. It has total 800K rows and some 180 odd features.
array([[ 1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    , -0.2637,  1.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  1.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    , -0.012 , -0.012 ,  0.    , -0.0028,
        -0.0108,  0.    , -0.0111, -0.0135,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    , -0.0034,
        -0.0027, -0.0725, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
        -0.0809, -0.355 ],
       [ 1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.2413,  1.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    , -0.012 , -0.012 ,  0.    , -0.0028,
        -0.0108,  0.    , -0.0111, -0.0135,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    , -0.0034,
        -0.0027, -0.0718, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
        -0.0809,  0.1579],
       [ 1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         0.    ,  0.    ,  0.1688,  1.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    , -0.012 , -0.012 ,  0.    , -0.0028,
        -0.0108,  0.    , -0.0111, -0.0135,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    , -0.0034,
        -0.0027, -0.0725, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
        -0.0809,  0.1642],
       [ 1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.2462,  1.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  1.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    , -0.012 , -0.012 ,  0.    , -0.0028,
        -0.0108,  0.    , -0.0111, -0.0135,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.0004,
        -0.0012, -0.069 , -0.0673, -0.0618, -0.0582, -0.0065, -0.057 ,
        -0.0809,  0.1713],
       [ 1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ,
         1.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.1273,  1.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  1.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    , -0.012 , -0.012 ,  0.    , -0.0028,
        -0.0108,  0.    , -0.0111, -0.0135,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,
         0.    ,  0.    ,  1.    ,  0.    ,  0.    ,  1.    ,  0.    ,
         0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  0.0037,
        -0.0023, -0.0633, -0.0673, -0.0625, -0.0582, -0.0065, -0.057 ,
        -0.0809,  0.1713]])
Also I have seen one I run SVM, then I get the same Nan, Inf error but it also prints some values as below. Again, there are no NaN anywhere. I have checked it completely. Still I don't know why it is throwing those values.
_unique_labels = _FN_UNIQUE_LABELS.get(label_type, None)
    105     if not _unique_labels:
--> 106         raise ValueError("Unknown label type: %r" % ys)
    107 
    108     ys_labels = set(chain.from_iterable(_unique_labels(y) for y in ys))
ValueError: Unknown label type: 117456     0
117457     0
117458     0
117459     0
117460     0
117461     0
117462     0
117463     0
117464     0
117465     0
117466     2
117467     0
117468     0
117469     0
117470   NaN
117471     0
117472   NaN
117473     3
117474     0
117475   NaN
117476     0
117477   NaN
117478     6
117479     0
117480     0
117481   NaN
117482   NaN
117483     0
117484   NaN
 
     
    