I am trying to format some weather data from meteo.gr website.
All good so far.
- I can filter out headers
- and remove empty files
The problem as shown below is that in cases where the data file is missing all of the data besides the date (leftmost column) from the initial columns, pandas reads them as a single column dataframe.
Before you ask... pd.read_csv('...',delim_whitespace = 1)))
Also
I would prefer if we did not skip any rows. If not I'll manage.
How do we solve, dear members?
 1  
 2  
 3  
 4  
 5  18.5  22.5   3:30p  13.9   5:40a   1.1   1.2   0.0   7.1  35.4   4:00p     W
 6  20.6  22.1  12:40p  16.7  12:40a   0.1   2.4   0.0  19.0  54.7   5:50p     S
 7  20.9  22.2   1:40p  20.1   7:00a   0.0   2.6   0.0  22.9  53.1  10:50a     S
 8  19.7  21.7   7:00a  16.8  10:10a   0.1   1.4  16.2  11.1  56.3   4:10a     S
 9  18.6  22.2   1:00p  14.6   7:00a   0.8   1.1   0.0  12.1  56.3   3:30p     W
10  20.8  23.2  10:50a  15.7  12:30a   0.2   2.7   0.0  25.7  69.2  10:10a     S
11  20.2  22.2  12:40a  17.7   7:30a   0.0   1.9   0.0  11.6  54.7  12:30a     W
12  17.9  20.1   1:20p  14.6  11:00p   0.8   0.3   1.6   6.9  38.6   2:20p    NW
13  16.9  19.7  12:10p  13.8   2:50a   1.7   0.2   0.0   9.0  30.6   2:10p   WNW
14  16.8  18.4   1:30p  15.8   4:30a   1.6   0.0   0.0  14.5  48.3   3:50p    NW
15  16.8  19.3   2:20p  14.6  11:50p   1.7   0.1   0.0   6.0  30.6  12:10a   NNW
16  18.6  20.8  12:20p  14.7  12:10a   0.3   0.6   0.0  15.1  45.1   2:20p    NW
17  18.6  21.8   2:30p  16.6   3:50a   0.6   0.8   0.0   9.2  29.0  12:30p    NW
18  18.9  21.6  11:40a  16.9   1:30a   0.3   0.9   0.0  13.8  38.6  10:50a    NW
19  18.2  19.4  11:10a  17.3  11:30p   0.3   0.2   0.0  14.5  45.1   3:10p   NNW
20  18.9  21.3   2:10p  17.4  12:30a   0.2   0.8   0.0  12.7  51.5   5:10a    NW
21  18.9  21.4   2:00p  17.2  12:00m   0.2   0.8   0.0  10.5  37.0   2:50p   NNW
22  17.9  20.6   3:20p  14.3  12:00m   0.9   0.5   0.0   8.4  25.7  12:30a   WNW
23  15.7  18.4   2:10p  12.6   7:00a   2.7   0.0   0.0   6.3  20.9   5:20a     W
24  16.2  18.8   1:20p  13.3   7:50a   2.2   0.1   0.0   6.8  19.3   3:10a     W
25  16.7  18.8  10:10a  13.6   6:50a   1.7   0.1   0.4   8.7  25.7   1:50p   WNW
26  16.9  20.2   1:10p  14.1  10:50p   1.6   0.2   0.0   6.9  29.0   2:20p    NW
27  15.8  19.1   2:30p  12.4   7:10a   2.6   0.1   0.0   7.2  22.5   5:00a     W
28  16.8  20.5  12:40p  13.3   6:40a   1.9   0.4   0.0   6.0  19.3   5:10a     W
29  17.8  21.4  11:20a  14.1   5:50a   1.3   0.7   0.0   5.5  20.9   6:40p     W
30  17.2  19.6  10:50a  14.6  11:50p   1.4   0.3   0.0   5.3  17.7   2:50p     W
