Using findInterval
referenceTable2 = cbind(-Inf, referenceTable)
for(x in 1:nrow(referenceTable2)){
  tmp <- findInterval(lookupTable$X, referenceTable2[x,])
  lookupTable[,'IsIn'] = lookupTable[,'IsIn'] + (tmp == 2)
}
lookupTable[,'IsIn'] = sign(lookupTable[,'IsIn'])
As you can see there still is a loop through your reference table so this solution works especially well if your reference table remains small. Some benchmarks:
1) Sample set:
> microbenchmark(nicholas = {set.seed(1); nref = 5; nlook = 10; referenceTable <- data.frame(A=runif(nref,min=0.25,max=0.5), B=runif(nref,min=0.50,max=0.75)); lookupTable <- data.frame(X=runif(nlook),IsIn=0); for(x in 1:nrow(lookupTable)){v   <- lookupTable$X[x]; tmp <- subset(referenceTable,v >= A & v < B); lookupTable[x,'IsIn'] = as.integer(nrow(tmp) > 0)}}, 
+                mts = {set.seed(1); nref = 5; nlook = 10; referenceTable <- data.frame(A=runif(nref,min=0.25,max=0.5), B=runif(nref,min=0.50,max=0.75)); lookupTable <- data.frame(X=runif(nlook),IsIn=0); referenceTable2 = cbind(-Inf, referenceTable); for(x in 1:nrow(referenceTable2)){tmp <- findInterval(lookupTable$X, referenceTable2[x,]); lookupTable[,'IsIn'] = lookupTable[,'IsIn'] + (tmp == 2);}; lookupTable[,'IsIn'] = sign(lookupTable[,'IsIn'])},
+                david = {set.seed(1); nref = 5; nlook = 10; referenceTable <- data.frame(A=runif(nref,min=0.25,max=0.5), B=runif(nref,min=0.50,max=0.75)); lookupTable <- data.frame(X=runif(nlook),IsIn=0); setDT(lookupTable)[, Y := X]; setkey(setDT(referenceTable)); lookupTable[, IsIn := 0 ^ !foverlaps(lookupTable, referenceTable, by.x = c("X", "Y"), mult = "first", nomatch = 0L, which = TRUE)]},
+                times = 100)
Unit: milliseconds
     expr      min       lq     mean   median       uq       max neval
 nicholas 1.948096 2.091311 2.190386 2.150790 2.254352  4.092121   100
      mts 2.520489 2.711986 2.883299 2.803421 2.885990  5.165999   100
    david 6.466129 7.013798 7.344596 7.197132 7.422916 12.274029   100
2) nref = 10; nlook = 1000
Unit: milliseconds
     expr        min         lq       mean     median         uq        max neval
 nicholas 152.804680 160.681265 164.601443 163.304849 165.387296 243.250708   100
      mts   4.434997   4.720027   5.025555   4.819624   4.991995  11.325172   100
    david   6.505314   6.920032   7.181116   7.111529   7.331950   9.318765   100
3) nref = 200; nlook = 1000
Unit: milliseconds
     expr        min         lq       mean     median         uq       max neval
 nicholas 172.939666 179.672397 183.337253 181.191081 183.694077 264.59672   100
      mts  77.836588  81.071752  83.860281  81.991919  83.484246 168.22290   100
    david   6.870116   7.404256   7.736445   7.587591   7.836234  11.54349   100
I think David's solution comes out as a clear winner. 
This solution has an edge when there are very few reference intervals. Note that in your example many of those are overlapping and combining them beforehand might further improve results.