I try doing some test and choose the best method.
The fastest one is creating list from column _id and split by native python split('~'):
df[['one', 'two', 'three']] = pd.DataFrame([ x.split('~') for x in df['_id'].tolist() ])
import pandas as pd
#test list
x =['82283344~Electronics~Mobile Cases & Covers', '82283346~Electronics~Mobile Cases & Covers', '82283343~Electronics~Mobile Cases & Covers']
#100000 lists
x = x * 100000
#create new df with column _id
df = pd.DataFrame({'_id': x })
print df.head()
                                         _id
0  82283344~Electronics~Mobile Cases & Covers
1  82283346~Electronics~Mobile Cases & Covers
2  82283343~Electronics~Mobile Cases & Covers
3  82283344~Electronics~Mobile Cases & Covers
4  82283346~Electronics~Mobile Cases & Covers
def DF(df):
    df[['one', 'two', 'three']] = pd.DataFrame([ x.split('~') for x in df['_id'].tolist() ])
def AP(df):
    df['one'] = df._id.apply(lambda x: x.split('~')[0])  
    df['two'] = df._id.apply(lambda x: x.split('~')[1])
    df['three'] = df._id.apply(lambda x: x.split('~')[2])
def EX(df):
    df[['one', 'two', 'three']] = df._id.str.split('~', expand=True)
def SP(df):
    df['one'] = df['_id'].str.split('~').str[0]
    df['two'] = df['_id'].str.split('~').str[1]
    df['three'] = df['_id'].str.split('~').str[2] 
DF(df)
print df.head()
AP(df)
print df.head()
EX(df)
print df.head()
SP(df)
print df.head()
4 times is repeating:
                                          _id       one          two  \
0  82283344~Electronics~Mobile Cases & Covers  82283344  Electronics   
1  82283346~Electronics~Mobile Cases & Covers  82283346  Electronics   
2  82283343~Electronics~Mobile Cases & Covers  82283343  Electronics   
3  82283344~Electronics~Mobile Cases & Covers  82283344  Electronics   
4  82283346~Electronics~Mobile Cases & Covers  82283346  Electronics   
                   three  
0  Mobile Cases & Covers  
1  Mobile Cases & Covers  
2  Mobile Cases & Covers  
3  Mobile Cases & Covers  
4  Mobile Cases & Covers  
Timing:
In [125]: %timeit DF(df)
     ...: %timeit AP(df)
     ...: %timeit EX(df)
     ...: %timeit SP(df)
     ...: 
1 loops, best of 3: 332 ms per loop
1 loops, best of 3: 564 ms per loop
1 loops, best of 3: 668 ms per loop
1 loops, best of 3: 1.09 s per loop