To answer this question one can design a solution around std::reference_wrapper. This code compiles and runs.
#pragma once
#include <array>
#include <functional>
#include <cstdlib>
#include <ctime>
namespace {
/// <summary>
/// some generic utility function 
/// with argument declared as 
/// native array reference
/// for testing purposes only
/// </summary>
template<typename T, std::size_t N >
inline void array_util_function( T (&arr_ref) [N] ) {
    auto random = [](int max_val, int min_val = 1) -> int {
        // use current time as seed for 
        // random generator, but only once
        static auto initor = []() { 
            std::srand((unsigned)std::time(nullptr)); return 0; 
        }();
        return min_val + std::rand() / ((RAND_MAX + 1u) / max_val);
    };
    for (auto & element : arr_ref) {
        element = random(N);
    }
}
// the key abstraction
template <typename T, std::size_t N>
using native_arr_ref_wrapper = std::reference_wrapper<T[N]>;
template<typename T, std::size_t N >
constexpr std::size_t array_size(T(&arr_ref)[N]) {
    return N;
}
// return the size of the native array
// contained within
template<typename T, std::size_t N >
constexpr std::size_t array_size(native_arr_ref_wrapper<T,N> & narw_) {
    return array_size(narw_.get());
}
/// <summary>
/// returns std::reference_wrapper copy
/// that contains reference to native array 
/// in turn contained inside the std::array
/// argument
/// </summary>
template<typename T, std::size_t N >
    inline auto
        native_arr_ref(const std::array<T, N> & std_arr)
        -> native_arr_ref_wrapper<T,N>
{
    using nativarref = T(&)[N];
    return std::ref(
            (nativarref)*(std_arr.data())
        );
}
    /// <summary>
    /// returns std::reference_wrapper copy
    /// that contains reference to native array 
    /// </summary>
    template<typename T, std::size_t N >
    inline auto
        native_arr_ref(const T (& native_arr)[N] )
        -> native_arr_ref_wrapper<T, N>
    {
        using nativarref = T(&)[N];
        return std::ref(
            (nativarref)*(native_arr)
        );
    }
    auto printarr = [](auto arr_ref, const char * prompt = "Array :") {
        printf("\n%s:\n{ ", prompt);
        int j = 0;
        // use the array reference 
        // to see the contents 
        for (const auto & element : arr_ref.get()) {
            printf(" %d:%d ", j++, element);
        }
        printf(" }\n");
    };
// arf == native array reference
void test_ () {
using std::array;
// the arf type is 
// std::reference_wrapper<int[10]> 
auto arf  = native_arr_ref(array<int, 10>{});
// the arf type is same here 
// but made from a native array
auto ar2 = native_arr_ref({ 0,1,2,3,4,5,6,7,8,9 });
printarr(ar2);
// notice how argument to native_arr_ref()
// does not exist here any more
// but, wrapper contains the copy 
// of the native array  
// type is here: int[10]&
auto & native_arr_ref = arf.get();
// due to array type decay 
// the type is here: int *
auto native_arr_ptr = arf.get();
// size_t
const auto size = array_size(arf);
// this function requires
// native array as argument
// this is how we use arf in place of 
// native arrays
array_util_function(arf.get());
printarr(arf);
    }
  }