I need to compute bspline curves in python. I looked into scipy.interpolate.splprep and a few other scipy modules but couldn't find anything that readily gave me what I needed. So i wrote my own module below. The code works fine, but it is slow (test function runs in 0.03s, which seems like a lot considering i'm only asking for 100 samples with 6 control vertices).
Is there a way to simplify the code below with a few scipy module calls, which presumably would speed it up? And if not, what could i do to my code to improve its performance?
import numpy as np
# cv = np.array of 3d control vertices
# n = number of samples (default: 100)
# d = curve degree (default: cubic)
# closed = is the curve closed (periodic) or open? (default: open)
def bspline(cv, n=100, d=3, closed=False):
    # Create a range of u values
    count = len(cv)
    knots = None
    u = None
    if not closed:
        u = np.arange(0,n,dtype='float')/(n-1) * (count-d)
        knots = np.array([0]*d + range(count-d+1) + [count-d]*d,dtype='int')
    else:
        u = ((np.arange(0,n,dtype='float')/(n-1) * count) - (0.5 * (d-1))) % count # keep u=0 relative to 1st cv
        knots = np.arange(0-d,count+d+d-1,dtype='int')
    # Simple Cox - DeBoor recursion
    def coxDeBoor(u, k, d):
        # Test for end conditions
        if (d == 0):
            if (knots[k] <= u and u < knots[k+1]):
                return 1
            return 0
        Den1 = knots[k+d] - knots[k]
        Den2 = knots[k+d+1] - knots[k+1]
        Eq1  = 0;
        Eq2  = 0;
        if Den1 > 0:
            Eq1 = ((u-knots[k]) / Den1) * coxDeBoor(u,k,(d-1))
        if Den2 > 0:
            Eq2 = ((knots[k+d+1]-u) / Den2) * coxDeBoor(u,(k+1),(d-1))
        return Eq1 + Eq2
    # Sample the curve at each u value
    samples = np.zeros((n,3))
    for i in xrange(n):
        if not closed:
            if u[i] == count-d:
                samples[i] = np.array(cv[-1])
            else:
                for k in xrange(count):
                    samples[i] += coxDeBoor(u[i],k,d) * cv[k]
        else:
            for k in xrange(count+d):
                samples[i] += coxDeBoor(u[i],k,d) * cv[k%count]
    return samples
if __name__ == "__main__":
    import matplotlib.pyplot as plt
    def test(closed):
        cv = np.array([[ 50.,  25.,  -0.],
               [ 59.,  12.,  -0.],
               [ 50.,  10.,   0.],
               [ 57.,   2.,   0.],
               [ 40.,   4.,   0.],
               [ 40.,   14.,  -0.]])
        p = bspline(cv,closed=closed)
        x,y,z = p.T
        cv = cv.T
        plt.plot(cv[0],cv[1], 'o-', label='Control Points')
        plt.plot(x,y,'k-',label='Curve')
        plt.minorticks_on()
        plt.legend()
        plt.xlabel('x')
        plt.ylabel('y')
        plt.xlim(35, 70)
        plt.ylim(0, 30)
        plt.gca().set_aspect('equal', adjustable='box')
        plt.show()
    test(False)
The two images below shows what my code returns with both closed conditions:
 

 
    

 
    