Although it has been a while since this question was asked, I will post my answer hoping it helps somebody.
Disclaimer: I know this solution is not standard, but I think it works well.
import pandas as pd
import numpy as np
data = np.array([[10, 2, 10, 10],
                 [10, 3, 60, 100],
                 [np.nan] * 4,
                 [10, 22, 280, 250]]).T
idx = pd.date_range('20150131', end='20150203')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df
               A    B     C    D
 =================================
 2015-01-31    10   10    NaN  10
 2015-02-01    2    3     NaN  22 
 2015-02-02    10   60    NaN  280
 2015-02-03    10   100   NaN  250
def calculate(mul, add):
    global value
    value = value * mul + add
    return value
value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)
df
               A    B     C     D
 =================================
 2015-01-31    10   10    10    10
 2015-02-01    2    3     23    22 
 2015-02-02    10   60    290   280
 2015-02-03    10   100   3000  250
So basically we use a apply from pandas and the help of a global variable that keeps track of the previous calculated value.
Time comparison with a for loop:
data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan
df.loc['2015-01-31', 'C'] = df.loc['2015-01-31', 'D']
%%timeit
for i in df.loc['2015-02-01':].index.date:
    df.loc[i, 'C'] = df.loc[(i - pd.DateOffset(days=1)).date(), 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']
3.2 s ± 114 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
data = np.random.random(size=(1000, 4))
idx = pd.date_range('20150131', end='20171026')
df = pd.DataFrame(data=data, columns=list('ABCD'), index=idx)
df.C = np.nan
def calculate(mul, add):
    global value
    value = value * mul + add
    return value
value = df.loc['2015-01-31', 'D']
df.loc['2015-01-31', 'C'] = value
%%timeit
df.loc['2015-02-01':, 'C'] = df.loc['2015-02-01':].apply(lambda row: calculate(*row[['A', 'B']]), axis=1)
1.82 s ± 64.4 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
So 0.57 times faster on average.