I have a function, I want to get its integral function, something like this:
That is, instead of getting a single integration value at point x, I need to get values at multiple points.
For example:
Let's say I want the range at (-20,20)
def f(x):
return x**2
x_vals = np.arange(-20, 21, 1)
y_vals =[integrate.nquad(f, [[0, x_val]]) for x_val in x_vals ]
plt.plot(x_vals, y_vals,'-', color = 'r')
The problem
In the example code I give above, for each point, the integration is done from scratch. In my real code, the f(x) is pretty complex, and it's a multiple integration, so the running time is simply too slow(Scipy: speed up integration when doing it for the whole surface?).
I'm wondering if there is any way of efficient generating the Phi(x), at a giving range.
My thoughs:
The integration value at point Phi(20) is calucation from Phi(19), and Phi(19) is from Phi(18) and so on. So when we get Phi(20), in reality we also get the series of (-20,-19,-18,-17 ... 18,19,20). Except that we didn't save the value.
So I'm thinking, is it possible to create save points for a integrate function, so when it passes a save point, the value would get saved and continues to the next point. Therefore, by a single process toward 20, we could also get the value at (-20,-19,-18,-17 ... 18,19,20)


