I have several data files (from excel) converted to pandas format and contained in a dictionary. Here is how i obtain the dataframes:
dataList = files
nameList = []
for raster in dataList:
        path_list = raster.split(os.sep)
        name = path_list[5][:-4]
        nameList.append(name)
dataDct = {}
for k, v in zip(nameList,dataList):
    dataDct[k] = read_excel(v).rename(columns={'Main Value': 'Main Value '+k, 'Auxiliary Value': 'Auxiliary Value '+k})
I combine them using:
(the dictionary being dataDct )
concat(dataDct.values(), join='outer', ignore_index=False).to_excel(writer, sheet_name='values').to_excel(writer, sheet_name='values')
writer.save()
This outputs a file wich only puts the files one after the other in a long file, disregarding the common fields they share... So it's difficult to use it for further analysis.
Here is a sample of the dataframes contained in the dataDct:
IN [2]:
value(HIB)
      1  CODE        VALUE_HIB       AUX_VAL_HIB
      2  F.F         00000    
      3  0.0.1   
      4  0.0.2       06-02-2016
      5  C.6         XYZ-21555FFF
      6  3.8.0*1     45000GHZ        01.01.2016
   Value (HIC)
      1  CODE        VALUE_HIC       AUX_VAL_HIC
      2  F.F         00000           111111
      3  0.0.1   
      4  0.0.3       06-02-2016
      5  C.6         XYZ-216666FFF
      6  3.9.0*1     65000GHZ        01.02.2016
   Value (HID)
      1   CODE        VALUE_HID       AUX_VAL_HID
      2  F.F         00000           0101010
      3  A.1.1       85 GHZ
      4  V.1.1       06-02-2016
      5  C.6         XYZ-21776FFF
      6  3.9.0*1     3000GHZ        01.02.2016
Expected output would be:
OUT[2]:
1  CODE    VALUE_HIB   AUX_VAL_HIB  VALUE_HIC   AUX_VAL_HIC  VALUE_HID   AUX_VAL_HID
2  F.F     00000                    00000       111111       00000      01010101
3  0.0.1   
4  0.0.2   06-02-2016
5  0.0.3                             06-02-2016
6  A.1.1                                                      85ghz
7  C.6     XYZ-21555FFF             XYZ-216666FFF            XYZ-21776FFF
8  V.1.1                                                      06-02-2016
9  3.8.0*1 45000GHZ     01.01.2016
10  3.9.0*1                          65000GHZ     01.02.2016   3000GHZ          01.02.2016
The idea being that the data is aligned and joined... I have tried joining on the axis:
concat(dataDct.values(), join='outer', ignore_index=False, axis=1).to_excel(writer, sheet_name='values')
The data is better displayed but is not joined on similar values :( Only joined on DAATAFRAMES displaying one after another... here is the example output of the error:
1  CODE        VALUE_HIB       AUX_VAL_HIB          VALUE_HIC       AUX_VAL_HIC
      2  F.F         00000    
      3  0.0.1   
      4  0.0.2       06-02-2016
      5  C.6         XYZ-21555FFF
      6  3.8.0*1     45000GHZ        01.01.2016
        F.F                                           00000           111111
        0.0.1   
       0.0.3                                          06-02-2016
        C.6                                                           XYZ-216666FFF
       3.9.0*1                                         65000GHZ        01.02.2016
Any ideas on what would be the correct syntax to combine the dictionary and obtain the desired output?
 
     
     
    