I see two solutions :
With data.frame and plyr
You could do it using %within% function in lubridate and with a for-loop or using plyr loop functions like dlply
DateTime <- c("2014-11-01 04:00:00", "2014-11-01 04:03:00", "2014-11-01 04:06:00", "2014-11-01 04:08:00", "2014-11-01 04:10:00", "2014-11-01 04:12:00", "2015-08-01 04:13:00", "2015-08-01 04:45:00", "2015-08-01 14:15:00", "2015-08-01 14:13:00")
DateTime <- as.POSIXct(DateTime)
Frequency <- c(1,2,3,5,12,1,2,2,1,1)
traffic <- data.frame(DateTime, Frequency)
library(lubridate)
DateTime1 <- c("2014-11-01 04:00:00", "2015-08-01 04:03:00", "2015-08-01 14:00:00")
DateTime2 <- c("2014-11-01 04:15:00", "2015-08-01 04:13:00", "2015-08-01 14:15:00")
DateTime1 <- as.POSIXct(DateTime1)
DateTime2 <- as.POSIXct(DateTime2)
mydata <- data.frame(DateTime1, DateTime2)
mydata$Interval <- as.interval(DateTime1, DateTime2)
library(plyr)
# Create a group-by variable
mydata$NumInt <- 1:nrow(mydata)
mydata$SumFrequency <- dlply(mydata, .(NumInt),
function(row){
sum(
traffic[traffic$DateTime %within% row$Interval, "Frequency"]
)
})
mydata
#> DateTime1 DateTime2
#> 1 2014-11-01 04:00:00 2014-11-01 04:15:00
#> 2 2015-08-01 04:03:00 2015-08-01 04:13:00
#> 3 2015-08-01 14:00:00 2015-08-01 14:15:00
#> Interval NumInt SumFrequency
#> 1 2014-11-01 04:00:00 CET--2014-11-01 04:15:00 CET 1 24
#> 2 2015-08-01 04:03:00 CEST--2015-08-01 04:13:00 CEST 2 2
#> 3 2015-08-01 14:00:00 CEST--2015-08-01 14:15:00 CEST 3 2
With data.table and functions foverlaps
data.table has implemented a function for overlapping joins that you could use in your case with a little trick.
This functions is foverlaps (I uses below data.table 1.9.6)
(see How to perform join over date ranges using data.table? and this presentation)
Notice that you do not need to create interval with lubridate
DateTime <- c("2014-11-01 04:00:00", "2014-11-01 04:03:00", "2014-11-01 04:06:00", "2014-11-01 04:08:00", "2014-11-01 04:10:00", "2014-11-01 04:12:00", "2015-08-01 04:13:00", "2015-08-01 04:45:00", "2015-08-01 14:15:00", "2015-08-01 14:13:00")
DateTime <- as.POSIXct(DateTime)
Frequency <- c(1,2,3,5,12,1,2,2,1,1)
traffic <- data.table(DateTime, Frequency)
library(lubridate)
DateTime1 <- c("2014-11-01 04:00:00", "2015-08-01 04:03:00", "2015-08-01 14:00:00")
DateTime2 <- c("2014-11-01 04:15:00", "2015-08-01 04:13:00", "2015-08-01 14:15:00")
mydata <- data.table(DateTime1 = as.POSIXct(DateTime1), DateTime2 = as.POSIXct(DateTime2))
# Use function `foverlaps` for overlapping joins
# Here's the trick : create a dummy variable to artificially have an interval
traffic[, dummy:=DateTime]
setkey(mydata, DateTime1, DateTime2)
# do the join
mydata2 <- foverlaps(traffic, mydata, by.x=c("DateTime", "dummy"), type ="within", nomatch=0L)[, dummy := NULL][]
mydata2
#> DateTime1 DateTime2 DateTime Frequency
#> 1: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:00:00 1
#> 2: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:03:00 2
#> 3: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:06:00 3
#> 4: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:08:00 5
#> 5: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:10:00 12
#> 6: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:12:00 1
#> 7: 2015-08-01 04:03:00 2015-08-01 04:13:00 2015-08-01 04:13:00 2
#> 8: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:15:00 1
#> 9: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:13:00 1
# summarise with a sum by grouping by each line of mydata
setkeyv(mydata2, key(mydata))
mydata2[mydata, .(SumFrequency = sum(Frequency)), by = .EACHI]
#> DateTime1 DateTime2 SumFrequency
#> 1: 2014-11-01 04:00:00 2014-11-01 04:15:00 24
#> 2: 2015-08-01 04:03:00 2015-08-01 04:13:00 2
#> 3: 2015-08-01 14:00:00 2015-08-01 14:15:00 2