If you are selecting M elements out of N, the strategy changes depending on whether M is of the same order as N or much less (i.e. less than about N/log N).
If they are similar in size, then you go through each item from 1 to N. You keep track of how many items you've got so far (let's call that m items picked out of n that you've gone through), and then you take the next number with probability (M-m)/(N-n) and discard it otherwise. You then update m and n appropriately and continue. This is a O(N) algorithm with low constant cost.
If, on the other hand, M is significantly less than N, then a resampling strategy is a good one. Here you will want to sort M so you can find them quickly (and that will cost you O(M log M) time--stick them into a tree, for example). Now you pick numbers uniformly from 1 to N and insert them into your list. If you find a collision, pick again. You will collide about M/N of the time (actually, you're integrating from 1/N to M/N), which will require you to pick again (recursively), so you'll expect to take M/(1-M/N) selections to complete the process. Thus, your cost for this algorithm is approximately O(M*(N/(N-M))*log(M)).
These are both such simple methods that you can just implement both--assuming you have access to a sorted tree--and pick the one that is appropriate given the fraction of numbers that will be picked.
(Note that picking numbers is symmetric with not picking them, so if M is almost equal to N, then you can use the resampling strategy, but pick those numbers to not include; this can be a win, even if you have to push all almost-N numbers around, if your random number generation is expensive.)