I have a CUDA kernel doing some computation on a local variable (in register), and after it gets computed, its value gets written into a global array p:
__global__ void dd( float* p, int dimX, int dimY, int dimZ )
{
int
i = blockIdx.x*blockDim.x + threadIdx.x,
j = blockIdx.y*blockDim.y + threadIdx.y,
k = blockIdx.z*blockDim.z + threadIdx.z,
idx = j*dimX*dimY + j*dimX +i;
if (i >= dimX || j >= dimY || k >= dimZ)
{
return;
}
float val = 0;
val = SomeComputationOnVal();
p[idx ]= val;
__syncthreads();
}
Unfortunately, this function executes very slow.
However, it runs very fast if I do this:
__global__ void dd( float* p, int dimX, int dimY, int dimZ )
{
int
i = blockIdx.x*blockDim.x + threadIdx.x,
j = blockIdx.y*blockDim.y + threadIdx.y,
k = blockIdx.z*blockDim.z + threadIdx.z,
idx = j*dimX*dimY + j*dimX +i;
if (i >= dimX || j >= dimY || k >= dimZ)
{
return;
}
float val = 0;
//val = SomeComputationOnVal();
p[idx ]= val;
__syncthreads();
}
It also runs very fast if I do this:
__global__ void dd( float* p, int dimX, int dimY, int dimZ )
{
int
i = blockIdx.x*blockDim.x + threadIdx.x,
j = blockIdx.y*blockDim.y + threadIdx.y,
k = blockIdx.z*blockDim.z + threadIdx.z,
idx = j*dimX*dimY + j*dimX +i;
if (i >= dimX || j >= dimY || k >= dimZ)
{
return;
}
float val = 0;
val = SomeComputationOnVal();
// p[idx ]= val;
__syncthreads();
}
So I am confused, and have no idea how to solve this problem. I have used NSight step in, and did not find access violations.
Here is how I launch the kernel (dimX:924; dimY: 16: dimZ: 1120):
dim3
blockSize(8,16,2),
gridSize(dimX/blockSize.x+1,dimY/blockSize.y, dimZ/blockSize.z);
float* dev_p; cudaMalloc((void**)&dev_p, dimX*dimY*dimZ*sizeof(float));
dd<<<gridSize, blockSize>>>( dev_p,dimX,dimY,dimZ);
Could anyone please gives some pointers? Because it does not make much sense to me. All computation of val is fast, and the final step is to move val into p. p never gets involved in the computation, and it only shows up once. So why is it so slow?
The computations are basically a loop over a 512 X 512 matrix. It is pretty fair amount of computation I'd say.