I've followed the Tensorflow Reading Data guide to get my app's data in the form of TFRecords, and am using TFRecordReader in my input pipelines to read this data.
I'm now reading the guides on using skflow/tf.learn to build a simple regressor, but I can't see how to use my input data with these tools.
In the following code, the app fails on the regressor.fit(..) call, with ValueError: setting an array element with a sequence.. 
Error:
Traceback (most recent call last):
  File ".../tf.py", line 138, in <module>
    run()
  File ".../tf.py", line 86, in run
    regressor.fit(x, labels)
  File ".../site-packages/tensorflow/contrib/learn/python/learn/estimators/base.py", line 218, in fit
    self.batch_size)
  File ".../site-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 99, in setup_train_data_feeder
    return data_feeder_cls(X, y, n_classes, batch_size)
  File ".../site-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 191, in __init__
    self.X = check_array(X, dtype=x_dtype)
  File ".../site-packages/tensorflow/contrib/learn/python/learn/io/data_feeder.py", line 161, in check_array
    array = np.array(array, dtype=dtype, order=None, copy=False)
ValueError: setting an array element with a sequence.
Code:
import tensorflow as tf
import tensorflow.contrib.learn as learn
def inputs():
    with tf.name_scope('input'):
        filename_queue = tf.train.string_input_producer([filename])
        reader = tf.TFRecordReader()
        _, serialized_example = reader.read(filename_queue)
        features = tf.parse_single_example(serialized_example, feature_spec)
        labels = features.pop('actual')
        some_feature = features['some_feature']
        features_batch, labels_batch = tf.train.shuffle_batch(
            [some_feature, labels], batch_size=batch_size, capacity=capacity,
            min_after_dequeue=min_after_dequeue)
        return features_batch, labels_batch
def run():
    with tf.Graph().as_default():
        x, labels = inputs()
        # regressor = learn.TensorFlowDNNRegressor(hidden_units=[10, 20, 10])
        regressor = learn.TensorFlowLinearRegressor()
        regressor.fit(x, labels)
        ...
It looks like the check_array call is expecting a real array, not a tensor. Is there anything I can do to massage my data into the right shape?