You can use numpy.arange:
>>> np.arange(0, 2*math.pi, math.pi/100)
array([ 0.        ,  0.03141593,  0.06283185,  0.09424778,  0.12566371,
        # ... 190 more ...
        6.12610567,  6.1575216 ,  6.18893753,  6.22035345,  6.25176938])
You might also be interested in numpy.linspace:
>>> np.linspace(0, 2*math.pi, 200)
array([ 0.        ,  0.0315738 ,  0.06314759,  0.09472139,  0.12629518,
        # ... 190 more ...
        6.15689013,  6.18846392,  6.22003772,  6.25161151,  6.28318531])
Using np.arange, the third parameter is the step, while with np.linspace it's the total number of evenly-spaced values in the interval. Also note that linspace will include the 2*pi, while arange does not, but stop at the last multiple of step smaller than that.
You can then plot those with matplotlib.pyplot. For sin, you can just use np.sin which will apply the sine function to each element of the input array. For other functions, use a list comprehension.
>>> from matplotlib import pyplot
>>> x = np.arange(0, 2*math.pi, math.pi/100)
>>> y = np.sin(x) # using np.sin
>>> y = [math.sin(r) for r in x] # using list comprehension
>>> pyplot.plot(x, y)
[<matplotlib.lines.Line2D at 0xb3c3210c>]
>>>pyplot.show()