I want to use ImageNet to do regression, the label is the two coordinates of the object, such as (622 132 736 318), and I have converted the images to .lmdb files.But when I try to train it, find this error
I0510 16:50:06.576092 7167 layer_factory.hpp:77] Creating layer data I0510 16:50:06.576848 7167 net.cpp:106] Creating Layer data I0510 16:50:06.576869 7167 net.cpp:411] data -> data I0510 16:50:06.576900 7167 net.cpp:411] data -> label I0510 16:50:06.576916 7167 data_transformer.cpp:25] Loading mean file from: /home/sx/caffe-master/sx/person_location/data/conferenceroom_train_mean.binaryproto I0510 16:50:06.578588 7171 db_lmdb.cpp:38] Opened lmdb /home/shawn/caffe-master/shawn/person_location/data/conferenceroom_train_lmdb I0510 16:50:06.595842 7167 data_layer.cpp:41] output data size: 256,3,227,227 I0510 16:50:08.680726 7167 net.cpp:150] Setting up data I0510 16:50:08.680807 7167 net.cpp:157] Top shape: 256 3 227 227 (39574272) I0510 16:50:08.680817 7167 net.cpp:157] Top shape: 256 (256) I0510 16:50:08.680824 7167 net.cpp:165] Memory required for data: 158298112 I0510 16:50:08.680842 7167 layer_factory.hpp:77] Creating layer conv1 I0510 16:50:08.680874 7167 net.cpp:106] Creating Layer conv1 I0510 16:50:08.680884 7167 net.cpp:454] conv1 <- data I0510 16:50:08.680907 7167 net.cpp:411] conv1 -> conv1 F0510 16:50:08.927338 7167 blob.cpp:33] Check failed: shape[i] >= 0 (-281264070 vs. 0) *** Check failure stack trace: *** @ 0x7fec6e186778 (unknown) @ 0x7fec6e1866b2 (unknown) @ 0x7fec6e1860b4 (unknown) @ 0x7fec6e189055 (unknown) @ 0x7fec73a13598 caffe::Blob<>::Reshape() @ 0x7fec7395206c caffe::BaseConvolutionLayer<>::Reshape() @ 0x7fec739a90ef caffe::CuDNNConvolutionLayer<>::Reshape() @ 0x7fec738d32fb caffe::Net<>::Init() @ 0x7fec738d4a98 caffe::Net<>::Net() @ 0x7fec73a1fd62 caffe::Solver<>::InitTrainNet() @ 0x7fec73a21262 caffe::Solver<>::Init() @ 0x7fec73a21599 caffe::Solver<>::Solver() @ 0x7fec738ebf43 caffe::Creator_SGDSolver<>() @ 0x4105bc caffe::SolverRegistry<>::CreateSolver() @ 0x4087ed train() @ 0x405d67 main @ 0x7fec64993b45 (unknown) @ 0x406588 (unknown) @ (nil) (unknown) Aborted
Here is the train_val.prototxt
name: "AlexNet"
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_mean.binaryproto"
  }
  data_param {
    source: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    mirror: false
    crop_size: 227
    mean_file: "/home/shawn/caffe-master/person_location/data/conferenceroom_train_mean.binaryproto"
  }
  data_param {
    source: "/home/shawn/caffe-master/person_location/data/conferenceroom_val_lmdb"
    batch_size: 50
    backend: LMDB
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}
layer {
  name: "loss"
  type: "EuclideanLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}