Project Euler question:
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.
My solution in Java:
public class problem21 {
private static int answer = 0;
public static void main(String[] args){
    for(int a = 1; a<10000; a++){
        int b = calculateSumOfDivisorsOf(a);
        if(calculateSumOfDivisorsOf(b) == a && b!=a){
            //amicable numbers
            //a is always amicable
            answer+=a;
            if(b<10000){
                //b is an amicable number under 10000
                answer+=b;
            }
        }
    }
    System.out.println(answer);
}
public static int calculateSumOfDivisorsOf(double num){
    String divisors = "1";
    int sum = 0;
    for(int i = 2; i< Math.sqrt(num); i++){
        if(num%i == 0){
            divisors+= " " + i;
            if(num/i != i){
                divisors += " " + num/i;
            }
        }
    }
    double[] divisorsArr = new double[divisors.split("\\s+").length];
    for(int i = 0; i< divisors.split("\\s+").length; i++)
        divisorsArr[i] = Double.parseDouble(divisors.split("\\s+")[i]);
    for(int i = 0; i < divisorsArr.length; i++)
        sum+= divisorsArr[i];
    return sum;
}
}
My(incorrect) answer: 63252
What is wrong with my code? The correct answer is 31626
 
    