A TreeList doesn't exist, so lets use a PersistentList as an example.
Lets say you have an @Entity that you want to save to a database:
public class MyMagicEntity {
@OneToMany
List<MyChildEntity> children;
public void setChildren(final List<MyChildEntity> children) {
this.children = children;
}
}
Now, when you create MyMagicEntity then you would do something like
final MyMagicEntity mme = new MyMagicEntity();
final List<MyChildEntity> children = new ArrayList<>();
children.add(new MyChildEntity("one"));
children.add(new MyChildEntity("two"));
children.add(new MyChildEntity("three"));
mme.setChildren(children);
//save to DB
So you created an ArrayList that you passed into your MyMagicEntity, which assigns it to the List - it doesn't care that the underlying implementation is as long as it's a List.
Now, later you do:
final MyMagicEntity mme = //load from DB
final List<Children> children = mme.getChildren();
So, what is children? Well, if we are using JPA and Hibernate it is actually a PersistentList, not an ArrayList.
As we access the members of children, Hibernate will go and pull them from the database. This List is still a List - your program doesn't have to know any of this.
Could you do this without using the List interface? No! Because:
- you cannot create a
PersistentList
- Hibernate cannot create an
ArrayList
Whilst this is an extreme example, where the underlying behaviour of the List is completely different, this applies in all sorts of other situations.
For example:
ArrayList and LinkedList have different performance characteristics, you may want to switch
- Guava has an
ImmutableList which you may want to use
Collections.unmodifyableList also implements List, which you may want to use
- You could conceivably have a
List backed by a file
The basic idea is that List defines what any list must be able to do, but not how it is done.