I decided to add another answer with timings for different methods and different dtypes - it would be too long for one answer...
Timings against 1M rows DF for the following dtypes: int32, int64, float64, object (string):

In [207]: result
Out[207]:
                              int32  int64  float  string
method
df[~np.in1d(df.col, excl)]      249    271    307    2420
df[~df.col.isin(excl)]          414    210    514     189
df.ix[~df.col.isin(excl)]       399    212    553     189
df.query('@excl not in col')    415    228    563     206
In [208]: result.T
Out[208]:
method  df[~np.in1d(df.col, excl)]  df[~df.col.isin(excl)]  df.ix[~df.col.isin(excl)]  df.query('@excl not in col')
int32                          249                     414                        399                           415
int64                          271                     210                        212                           228
float                          307                     514                        553                           563
string                        2420                     189                        189                           206
Raw results:
int32:
In [159]: %timeit df[~np.in1d(df.int32, exclude_int32)]
1 loop, best of 3: 249 ms per loop
In [160]: %timeit df[~df.int32.isin(exclude_int32)]
1 loop, best of 3: 414 ms per loop
In [161]: %timeit df.ix[~df.int32.isin(exclude_int32)]
1 loop, best of 3: 399 ms per loop
In [162]: %timeit df.query('@exclude_int32 not in int32')
1 loop, best of 3: 415 ms per loop
int64:
In [163]: %timeit df[~np.in1d(df.int64, exclude_int64)]
1 loop, best of 3: 271 ms per loop
In [164]: %timeit df[~df.int64.isin(exclude_int64)]
1 loop, best of 3: 210 ms per loop
In [165]: %timeit df.ix[~df.int64.isin(exclude_int64)]
1 loop, best of 3: 212 ms per loop
In [166]: %timeit df.query('@exclude_int64 not in int64')
1 loop, best of 3: 228 ms per loop
float64:
In [167]: %timeit df[~np.in1d(df.float, exclude_float)]
1 loop, best of 3: 307 ms per loop
In [168]: %timeit df[~df.float.isin(exclude_float)]
1 loop, best of 3: 514 ms per loop
In [169]: %timeit df.ix[~df.float.isin(exclude_float)]
1 loop, best of 3: 553 ms per loop
In [170]: %timeit df.query('@exclude_float not in float')
1 loop, best of 3: 563 ms per loop
object / string:
In [171]: %timeit df[~np.in1d(df.string, exclude_str)]
1 loop, best of 3: 2.42 s per loop
In [172]: %timeit df[~df.string.isin(exclude_str)]
10 loops, best of 3: 189 ms per loop
In [173]: %timeit df.ix[~df.string.isin(exclude_str)]
10 loops, best of 3: 189 ms per loop
In [174]: %timeit df.query('@exclude_str not in string')
1 loop, best of 3: 206 ms per loop
Conclusion:
np.in1d() - wins for (int32 and float64) searches, but it's approx. 10 times slower (compared to others) when searching strings, so don't use it for object (strings) and for int64 dtypes!
Setup:
df = pd.DataFrame({
    'int32':    np.random.randint(0, 10**6, 10),
    'int64':    np.random.randint(10**7, 10**9, 10).astype(np.int64)*10,
    'float':    np.random.rand(10),
    'string':   np.random.choice([c*10 for c in string.ascii_uppercase], 10),
    })
df = pd.concat([df] * 10**5, ignore_index=True)
exclude_str = np.random.choice([c*10 for c in string.ascii_uppercase], 100).tolist()
exclude_int32 = np.random.randint(0, 10**6, 100).tolist()
exclude_int64 = (np.random.randint(10**7, 10**9, 100).astype(np.int64)*10).tolist()
exclude_float = np.random.rand(100)
In [146]: df.shape
Out[146]: (1000000, 4)
In [147]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000000 entries, 0 to 999999
Data columns (total 4 columns):
float     1000000 non-null float64
int32     1000000 non-null int32
int64     1000000 non-null int64
string    1000000 non-null object
dtypes: float64(1), int32(1), int64(1), object(1)
memory usage: 26.7+ MB
In [148]: df.head()
Out[148]:
      float   int32       int64      string
0  0.221662  283447  6849265910  NNNNNNNNNN
1  0.276834  455464  8785039710  AAAAAAAAAA
2  0.517846  618887  8653293710  YYYYYYYYYY
3  0.318897  363191  2223601320  PPPPPPPPPP
4  0.323926  777875  5357201380  QQQQQQQQQQ